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Introduction
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�is �esis is the result of continued and careful inquiry on the foundations of certain

accepted results in sub�elds of Economics.

My past experiences with experiments in Physics shaped how I a�empt to understand an

a-priori unknown system. Mostly, I learned about complex mechanisms by complementing

theory with computer simulations and conducting careful observations to be con�dent about

each small assertion. In a laboratory, a postulate needs empirical con�rmation or it is not real,

and possibly not worth developing it further. I was alarmed to see that this intimate connection

between observation and theory was much more blurred in Economics. �is is understandable

partly because Economics involves thought and re�ection on human and social phenomena.

And it is also true that, especially during XXth century, the detailed observations and technical

means to process such information were largely unavailable. In my opinion this constraint

explains the a weak incorporation of observation into the theoretical path of the discipline.

It started to recede once detailed evidence in digital formats became available and the use

of computers became widespread, thereby allowing a slow recovery from this dissociation of

observation and theory that is ongoing.

In this context, I believe much of the improvement to the �eld can come from spending

time to carefully revisiting the initial stages of the processing of observations. Weak steps

there can spoil any results.

Works that dedicate to study observations, as opposed to focusing on results are not un-

known to Economics. �e thesis of R. Gibrat (1931) is an example of a collection of multi-

ple empirical observations accompanied by models and analytical developments to formalize

them. He was precisely an engineer, and a�er these four years I come to perceive the habits

of engineering as a north that at this moment can strengthen Economics as a science. More

concretely: actual magnitudes need to take a more central role. Observations of numbers of

people, amounts of value, time periods, geographical distances or areas need to be actively

combined and contrasted among themselves. �e range and ticks on horizontal and vertical

axes of plots are not peripheral information, they are telling key truths about the values that

are observed. We need to be at every step aware of observed values and seek to be correct in

our interpretation of the problem to guide ourselves straight to the place where there is the

needle in a haystack.
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Taking formal aspects as a priority when approaching problems may come at the cost of

devoting less a�ention to the discussion of speci�c results put forward in economic studies.

�e contribution here is in many senses technical, although it seeks to mention the connections

to speci�c economic concepts when possible.

�e �esis comprises four chapters, reporting papers I have produced or contributed to.

Chapter 2 o�ers tools to understanding how the aggregation of nonlinear micro agents

all the way up to a national aggregate comes about. It deals with log distributed and log

�uctuating agents, typical of any economy. It shows how entry and exit (an essential feature

of economic agents) should be accounted.

In Chapter 3 I test the grounds for uni�cation of a variety of similarity (correlation) mea-

sures in se�ings where a total quantity is disaggregated by subunits of the type ’economic

activity class’ and ’geographical areas’. It works out the formalities of connecting similarity

indices computed from administrative areas, to approaches based on continuous geographical

space. It shows techniques to process correlation matrices. Good quality data from 2002-07

and robust techniques show the correlation structure of US employment clearly points to phe-

nomena proposed by Marshall (1890) (Ch. XI).

Two other papers complete the �esis. Next I introduce each of these four pieces in more

detail.

�e Chapter 2 tracks the aggregation of �uctuations of a population of economic agents.

If the aggregate is exactly the sum of all micro contributions then a single formal framework

valid for micro and macro may be possible. I show that indeed this is the case although there

are formal obstacles to deal with. To constrain and guide the analytical developments I use

information of French exports and imports at the �rm level (Customs o�ce).

�e strategy I o�er for dealing with the aggregation of micro shocks consists of separat-

ing the task in two stages: from �rms into sectors (�rst stage), and from these sectors into

an aggregate (second stage). �e reason for this is that �rm level �uctuations are highly non

linear, so that for aggregating them we need a special technique (sum of powers) akin to con-

sidering
∫
p(t)10kt, where p(t) is the distribution of micro �uctuations (k = 1, 2, ... is used for

moments of k − th order). Instead, once enough �rms are grouped, the �uctuations showed

by this sector are milder and allow linear combination of �uctuations. �is second stage even
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if simpler, is not covered carefully in currently available references. I o�er an approach to rig-

orously track the aggregation from micro to macro and possibly address a variety of speci�c

questions in future studies.

Following this aggregation carefully in light of the empirical constrains already lets us re-

vise some of the accepted conceptions regarding aggregate volatility. A relation between the

idiosyncratic part of aggregate variance and parameters of the size distribution proposed in

Gabaix, 2011 is seen to not hold empirically and happens to involve some formal gaps that need

revision. I show that the increased volatility due to concentration stems from the basic proper-

ties of aggregate variance and does not require an economic argument (eg. Hulten’s theorem

and Domar weights). In addition, I show that the milder decay of variance with population

size can be explained from comovement among �rms if we account for micro �uctuations

carefully, as is unrelated to the parameters of the size distribution.

�e paper is treats every open aspect with the necessary care. I make a compromise be-

tween o�ering a robust formal treatment of the problem and leaving expositions simple when

possible. �e problem of aggregating micro �uctuations involves some complicated formal

steps but the insights we can derive are worth the e�ort. In essence we are relating micro to

macro accounts with precision.

A�er having studied aspects that ma�er to disaggregation under a single criteria, in Chap-

ters 3 and 4 I focus on few special cases which involve a double disaggregation.

In Chapter 3, the empirical se�ing consists of counts of total employment (or number of

establishments) disaggregated by industrial category and geographical units of the contiguous

United States (US). Here we introduce so called similarity measures. First we study aspects

that ma�er for the robustness of results, such as whether di�erent similarity measures can be

in practice equivalent, and how can continuous spatial accounts enter the picture. �en we

compute and discuss the correlation structure derived from such cross sectional data of the

US and thereby we show this technique can be useful to detect spatial pa�erns that ma�er to

economic geographers. Next I describe these steps in greater detail.

We begin by testing the grounds for uni�cation of a variety of tecniques used in the liter-

ature to estimate cooccurrence. More precisely, we consider raw data, log transformed levels,

and binarized location quotients as possible pre processing steps. In addition, we consider
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similarity measures including simple joint coocurrence (XTX) Pearson correlation, cosine

similarity, covariance, and proximity as in Hidalgo et al. (2007). We see that, at least when

applied on employment levels by 4 digit industry and US county, all combinations of this data

processing and similarity measure lead to ranks of industry pairs (less similar to most similar)

that are not plainly contradictory among themselves. �is delimits the room for unifying the

methods applied by di�erent studies, with the aim of higher cross study comparability.

Secondly, given the side categories are geographical units we seek to formalize the connec-

tion between accounts in continuous space and the above mentioned measures of cooccurrence

computed on cross sections by activity and administrative area. We determine how exactly

cosine similarity can be an indicator of actual coexistence of locations in continuous space.

We approach this analytically and con�rm the validity, caveats and details of this connection

through computer simulations.

A�er having contextualized a family of measures of coexistence and showing details of

its interpretations in a continuous space framework, and showing how space would enter the

picture formally, we look at the outcome of applying these measures on the counties of US. We

argue that the correlation structures carry key information regarding the spatial distribution

of activities, and that they are objective tools that can be applied in for studying spatial pat-

terns in a general se�ing. When applied in the US we infer a network of economic activities,

and the neighborhoods in this network are linked to types of spatial pa�erns. �ese la�er

can be organized in four themes: population, large cities, natural resources, and manufactur-

ing, pointing directly and clearly to the phenomena discussed in Marshall (1890) and multiple

subsequent works.

We are thus o�ering tools for understanding correlations in spatial cross sections and

showing that they allow formal and relevant analysis for spatial phenomena.

Next, Chapter 4 is dedicated to the study of a speci�c type of measure called Location

�otient (LQ). Still in the context of double disaggregation (eg exports by country and product,

number of patents by city and technology �eld) the location quotient is de�ned as the ratio

between the observed probabilities (values/total) and the expectation from multiplying the

marginal probabilities the pair of categories.

�e location quotient has been adopted widely, but it shows e�ects that might be undesired.
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Among them, an e�ect that has been partially acknowledged but never truly measured is a size

distortion by which the scale of LQ tends to be e�ectively wider for observations from smaller

entities of the datasets.

I propose to use the probability of an observation crossing the LQ = 1 threshold within a

time period, conditional on the values of size parameters, as an a posteriori estimator of the

e�ective scale of the LQ metric. In this way we can sense e�ective distortions of the scales of

LQ. Apart from a direct estimation of this pa�erns, I o�er an analytical model that explains

the qualitative result. �ey depend crucially on the fact that larger entities are less volatile

(H. R. Stanley et al., 1996).

Drawing upon these insights, future empirical works can have ideas as to how to control

size e�ects of LQ indices, allowing more robust and consistent results.

�e paper closing this thesis, presented in 5 emerged from a collaboration during a visiting

research period at Harvard Kennedy School, where I worked with Prof. Ne�e and colleagues.

It sets the focus on the methodological choices used in studies of economic diversi�cation.

In this paper the dialogue with strands of research in economic geography is more clearly

present. Hypothesis regarding diversi�cation involving concepts of related variety (Frenken

et al., 2007), complexity, and product spaces (Hidalgo et al., 2007) may highlight the role of

di�erent mechanisms. For example, depending on the reference, diversity of related activities

would lead to growth by a process of Schumpeterian learning (Frenken et al., 2007), while a

coexistence of unrelated activities in a region would be a signal of wider sets of underlying

capabilities and then a be�er economic performance (Hidalgo et al., 2007).

Formalize measures denoting diversity can help comparing these two approaches formally.

�en, in this paper we introduce and discuss formal measures of diversity borrowed from

an interdiscipline centered in ecological studies. One can quantify three main meanings of

diversity (variety, balance and disparity), each of which has a formal de�nition that would

allow us to quantify.

When it comes to the studies of complexity we propose to take a closer look at what the

method of re�ections as introduced by Hidalgo et al. (2007) implies in general. When applied

on cross sections of exports by country and product it can lead to a ranking of countries by

economic complexity index (ECI) that has highly developed, diversi�ed countries on one end
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and less developed one on the other. ECI has then been interpreted as a measure of diversity.

But does this method lead to a diversity measure in general? �e answer is that the method

of re�ections is analogous to a spectral clustering algorithm that will arrange structurally

dissimilar nodes in two opposite (similar within) ends, as best as it can. �en whether ECI can

be a measure of diversity will depend on what cross section of the data we are applying it on.

We see that it manages to rank US cities by income based on their industry information, but

it fails to reach the same outcome in a cross section of industries by occupations. �is la�er

disaggregation leads to thematic correlation structures and so a two pole clustering algorithm

as ECI is likely to not work.

Same as the papers in previous chapters, this last one makes an e�ort to highlight the im-

portance of revisiting methods before interpreting results further and o�ers formal tools for

more careful quanti�cation. It also features product spaces, which are essentially correlation

structures like those covered in Chapter 3. But it �nds that the characteristics of the enti-

ties into which the total is disaggregated are decisive for what are the outcomes. �is paper

however does a more commi�ed address of the contemporaneous discussions involving the

connection of economic growth and diversi�cation.
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Chapter 2

Aggregate accounts from populations of

micro agents
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Abstract

In this paper, we o�er a technique that helps one trace the aggregation of �rm level exports and

imports into national aggregates.

On the one hand we clarify the linear relations that link sectoral �uctuations to aggregate

�uctuations of an economy. �en, we study the aggregation of groups of �uctuating agents within

a parts of the aggregate. In this way a precise reconstruction of the aggregation of �uctuations

from the micro to the macro level is possible.

We use �rm level export and import data from France Customs over the period 1997-2013 to

constrain the theoretical derivations to parameter regions that ma�er in practice. In this way a

problem that is generally di�cult can be simpli�ed. Empirically constrained computational tests

let us know that each analytical expressions in this paper is true, either exactly or approximately.

I show that there is a ’postponement’ of the law of large numbers by which idiosyncratic

variance decays more slowly than 1/N with the population sizeN caused by large, multiplicative

micro �uctuations and can be accounted as a comovement among agents. I clarify that this is

unrelated to another situation by which concentration allows groups of few large �rms drive the

aggregate towards their level of volatility.

2.1 Introduction

Understanding the connection between the dynamics of a large number of economic agents

and the aggregate characteristics observed on such a population is a clear and recurrent moti-

vation of economic studies. Even if it is not a new problem, technical possibilities available to

us today provide approaches that were out of reach even in recent times. So that new insights

to this old question may de�nitely still come about.

In current days there is an increasing wealth of detailed evidence in digital formats and

an ever growing adoption of computers in research. Especially, I am referring to the use of

computers for heavy and sophisticated data processing and in some cases as programmable

calculators. In this way, long standing technical limitations everywhere to be seen in older
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papers have faded. But not all questions have been reformulated in light of the new technical

possibilities.

In the case that the aggregate variable (X) is plainly the sum of a quantity (si) observed

in each agent of the population, the relation X =
∑

i si o�ers a formal condition that can

unequivocally guide the study of the problem. An aggregate variable X is characterized by

its mean level E[X] and the width of deviations from it std[X] =
√

var[X], where E, std

and var are expected value, standard deviation and variance operators respectively. I say ag-

gregate volatility to refer to var[X]. Are there insightful expressions of var[X] in terms of

characteristics of the population of agents? �is is what we aim to study in this paper, both

by reviewing some established ideas, and by completing undeveloped links in the aggregation

of micro �uctuations.1

I said computers and detailed evidence mean a substantial opening of paths to study com-

plicated economic se�ings. More concretely, what possibilities do we have now that did not ex-

ist before? First of all we can restrict theoretical developments to empirically relevant se�ings.

A general problem may be too wide and demanding a variety of mathematical frameworks,

but the data can let us simplify the task by directing us to understand the speci�c mecha-

nisms that play a relevant role in practice (in our case, characteristics of size distributions of

agents and their �uctuations determine much of what issues need to be studied). Parameters

of an empirical system (in our case, population sizes, moments of micro �uctuations) can also

constrain and guide the analysis and give meaning to the answers we �nd along the way.2 A

consequence of the new powerful technical means is that, as much as we avoid empirically

irrelevant problems, we are also more con�dent to go through certain slightly uncomfortable

formal paths if we see that we do need them to understand an empirical situation (see section

2.8). Another novelty is that we can know if the equations we arrive at are true or not. �e

importance of this single item cannot be underestimated. I can know that even the more com-

plex equations in this paper are valid in the context of the problem I study with a con�dence

I could simply not count on if I had not tested them on a computer. A �nal possibility for
1�e words ’agent’ and ’entity’ or ’�rm’ are used indistinctly, being them the atomistic agents of international

trade.
2�e word ’size’ refers generically to the value of the variable which is basis of aggregation. Because we use

�rm level international trade as empirical benchmark, the size of an agent for us is the value an agent imported
or exported in a time period.
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hypothesis testing that I �nd quite helpful, especially when counting on rich micro data is

that of using random samples with replacement, or bootstrapping. With this technique we can

(among other exercises) measure macro results of changing micro characteristics of a system

and explain these outcomes in light of theoretical expectations.

Our empirical benchmark are all French �rms importing and exporting over the period

1997 - 2014. Even if this work is at every step tightly a�ached to the real dynamics of this

reference population of economic agents, it does not follow the most popular approaches to

understanding volatility aggregation found in the literature. Let us explain the main reasons

for these departures.

Neoclassical models in the context of business cycle theory (Kydland & Presco�, 1982; Long

& Plosser, 1983) have in�uenced the approaches to studying aggregate volatility in economics.

Even up to this date it is not surprising to see a paper studying macro volatility begin by posit-

ing a system of optimizing agents. I do not recur to them because aggregate volatility does

not forcefully need them. �e bene�t of leaving models aside for a moment is that the insights

we derive are not dependent on particular choices. In addition, models may involve variables

not easily observable, preventing solid empirical testing. Another usual approach to under-

standing volatility is by looking for factors that correlate with increased volatility (Stockman

(1988) as an early example). Here however I seek to trace micro �uctuations from the bo�om

up and in this way understanding how micro characteristics determine the observed aggre-

gate variance, as opposed to explaining variance by a factor. Finally, the decision of agents is

o�en at the center of theoretical approaches in economics (Lucas (1977), as an example among

countless others in a long tradition). If our goal is to account for �uctuations however, we can

abstract from the subjective point of view of an agent. In fact, it is highly advisable to separate

the problem in two complementary tasks. On the one hand, knowing how agent levels are

aggregated and what non trivial mechanisms play a role there. �is is a clean formal task and

it is what I undertake in this work. On the other hand, understanding why and how the micro

observations came to be what they are. �is is out of the scope of this paper, and it involves

the study of a wide range of particular economic situations resulting in the micro �uctuations

observed. �e former task does not need the la�er.

When it comes to the aggregate volatility shown by a population of agents, the agents’
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size distribution as well as the distribution of their �uctuations are the two single features

that decide the formal frameworks that will be needed. �e size distribution of economic

agents in a variety of contexts has been long accepted to be possibly log-normal or power

law (Pareto) (Axtell, 2001; Gibrat, 1931; Hart & Prais, 1956). �e distributon of �uctuations,

although already suggested log distributed by Gibrat, became more clearly determined in more

recent studies as H. R. Stanley et al. (1996) and related papers, as multiplicative (thereby non

linear) and of large magnitude.

A population of thousands of non linearly �uctuating agents is not a simple system to

understand fully and presents a variety of non intuitive mechanisms. For example, the con-

centration due to Pareto or log-normal size distributions, means that the few largest agents

drive aggregate volatility towards their level of volatility. �is feature is intuitive and easy to

explain, but gained consensus only in the last decade.

A paper that focuses in the issue of aggregate variance and became the main reference in

current studies is Gabaix (2011). �is contribution, even if it was well received in the commu-

nity has established a series of misconceptions regarding volatility aggregation that need to be

urgently clari�ed. It claims a direct relation between size distribution parameters and the rate

of decay of idiosyncratic variance. �is relation has not been observed empirically, and this is

expectable because the formal steps leading to this result do not hold. �is is mostly because of

ignoring that agents show large multiplicative �uctuations so that aggregate volatility cannot

be expressed as a linear combination of agents volatility.3

In this paper instead I follow the aggregation with the care it requires, and tap into a variety

of situations that interact among themselves to result in the levels of aggregate volatility that

we observe in large populations of �uctuating agents.

I clarify that the basic properties of aggregate variance and the shape of the logarithmic

curve implies value weighted contributions of parts to aggregate variance. Concentration due

to log-normal or Pareto size distributions therefore allows groups of few large agents to drive

the idiosyncratic part of aggregate volatility.

As a separate phenomenon, there is a departure from the law of large numbers (LLN) in the
3Additionally it assumes a proportionality between Her�ndahl index and idiosyncratic volatility that does

not hold in general.
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decay of volatility with number of agents. It is not hard to see clearly this milder decay of vari-

ance by the LLN is accounted by highly non linear �rm level shocks resulting in comovements

among agents. �e idea that the power law of size distributions explains the postponement of

the law of large number as installed by Gabaix (2011) needs revision in light of its substantial

formal gaps.

�e next sections are organized as follow. In section 2.2 we review related strands of lit-

erature. In section 2.3 we introduce the data and methods. In section 2.4 we explore the size

distribution and the distribution of growth rates in our data. Section 2.5 contains the gener-

ally useful mathematical de�nitions and properties. Section 2.6 discusses why acknowledging

non linearities of �rm level data is necessary to avoid incorrect outcomes. Section 2.7 does a

concise formal review of the diversi�cation argument as in Lucas (1977) and the contribution

of Gabaix (2011). It then clari�es the framework for studying the decay of variance with popu-

lation size. Once the sectoral to aggregate (linear) relations are clari�ed, I proceed to studying

groups of agents with the goal of completing the non linear part of the aggregation (Section

2.8). �e core contributions of this paper are explored formally in this section. Essentially, if

we understand the variance of groups of agents, we can then aggregate them simply by linear

equations to arrive at aggregate volatility, thereby having a connection between the micro

parameters and the macro volatility observed.

Section 2.9 controls for results robustness when changing agents’ size distribution. Section

2.10 shows how extensive margins can be accounted. It shows and discusses estimations of

cross covariance elements. Section 2.11 is a summary of how all the mechanisms we found

combine in our empirical benchmark system to let the aggregate show its observed variance.

�e developments in Appendix are important, although out of the main body for brevity.

Here there are estimations of uncertainty introduced by o� diagonal covariances, clari�cation

of accounts in the frequency domain, derivation of moments of log-normal and log-Laplace

distributions, and most importantly, introduction of the codes that de�ne the tests and esti-

mation procedures used in the paper.
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2.2 Related Works

�ere have been di�erent approaches to the goal of explaining aggregate volatility, we review

them in this section.

Many of the papers in economics studying aggregate volatility estimate the relevance of

certain variables by estimating regressions with a variety of speci�cations (Canals et al., 2007;

Castro et al., 2015; Foerster et al., 2011; Giovanni & Levchenko, 2014; Koren & Tenreyro, 2007;

Stockman, 1988). Even if this can be useful for estimating the importance of certain factors,

in this work we seek actual accounting of �uctuations based on the condition X =
∑

i Si

constraining how micro and macro �uctuations relate. �is is a di�erent approach from using

regressions to �nd ’variables that can help explain’ aggregate volatility. Some of the mathe-

matical framework in this paper can still be applied in exercises involving factor models.

�e business cycle tradition in economics lent itself naturally to studying variance which in

fact comes directly from the amplitude of wave components (Eq. 2.65 in Appendix). Impactful

contributions proposing one time step speci�cations in real bussiness cycle logic (Kydland &

Presco�, 1982; Long & Plosser, 1983) popularized the study of volatility under the framework

of neo classical equilibrium models. Recent papers studying volatility in economics continue

to start by asking new classical macroeconomic models (Carvalho & Grassi, 2019; Giovanni &

Levchenko, 2014).

I do not adopt economic models in this paper. �e reason is that problems strictly related

to aggregate volatility are independent of characteristics of models. In fact an economic model

can be an unnecessary blur complicating our understanding of inherent mathematical situa-

tions (which are already non trivial). Not to mention that key variables of models may not be

well observable or unequivocally de�ned, resulting in fatal gaps between theory and empir-

ics.4 5 �is paper is long and detailed, and we only dedicate to study open problems present

when aggregating agent sales, which ful�ll X =
∑

i Si exactly. Many of our results extend to

the case where we aggregate, e.g. production, although they precede the introduction of an
4By involving production models many papers deal with total factor productivity (TFP). However it is known

that measurement of TFP is problematic and goes in hand with assumptions on labour, capital and possibly other
unprecised factors (cf for example Felipe and Fisher (2003) for discussion).

5Some of our expressions for aggregate volatility are of course linked closely to analytical developments in
the context of equilibrium models, the closest of such works is possibly D. Baqaee and Farhi (2018).
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’aggregation of production’. 6

In models following Kydland and Presco� (1982) and Long and Plosser (1983) the time

step perspective is close to autoregresive model estimations (cf Bollerslev et al. (1994), esp.

S4). �ey lend themselves to decompositions into frequency domain (as in Dupor (1999) and

Horvath (1998)), and they are akin to the modern study of higher frequency �nancial time

series (Jacod & Pro�er, 2012). A subtle but important departure from this paper with respect

to this tradition is in the description of �uctuations by deviation from a mean, as opposed

to one step time di�erences. �is is the best choice when it comes to aggregation of micro

�uctuations and it should be adopted for easier, more solid results. Even if an autorregresive

framework is useful for studying other type of questions related to agents’ dynamics.

If we seek to relate time series of national aggregate sales to the dynamics of a population

of agents there are two elements that are basic and indispensable: the levels of sales of the

agents, and their evolution over time.

When it comes to empirical studies, evidence on size distribution of �rms has shown that

it is usually stable over time, possibly adapting to a lognormal (cf. for example Hart and Prais

(1956)) or a power law, Pareto distribution (Axtell, 2001).

�e evolution of �rm sales has been subject of wider debate. Minimal quality evidence for

so�sticated hypotesis testing did not appear at least until the 1950’s and high quality data not

even available in the 2000’s. Hypotheses of Brownian dri� of �rm logarithmic levels of sales

(wrongly a�ributed to Gibrat 1931) have been rejected. �ere is a signi�cant autocorrelation

pa�ern that leads to stability (Boeri, 1989; Chesher, 1979). �at is, the di�usion expected from

an iid sequence of shocks is not observed and indeed there is usually a negative autocorrelation

between log(St) and log(St−1). For the purposes in this paper, the precise shape of growth

rate distributions and their self dependence is not crucial. �e important fact is that their

distribution can be naturally given as a distribution of log values in line with known results

on domestic sales in countries other than France reported previously in Amaral et al. (1997),

Bo�azzi and Secchi (2006), and H. R. Stanley et al. (1996) among others.

�e most debated issues stemming from variance aggregation have to do with certain non
6We will use the term ’sales’ to refer to the value of transactions between �rms (or agents if we include

individuals) be it exports (French sellers to foreign buyers) or imports (French buyers to foreign sellers). We are
accounting �ows accumulated in time periods.

20



intuitive aggregate results of the micro dynamics. �e most clear example is the observation

that the standard deviation observed in the total �uctuations from a population ofN normally

�uctuating contributions should be of the order of 1/
√
N . And nevertheless national or world

aggregates are known to �uctuate far more than this (the number of agents N would easily

be of thousands or more).

�e most frequent reference when it comes to answering this naive diversi�cation intuition

is the ’granularity’ paper of Gabaix (2011) (from here on denoted Gb11). �e typical mention

of this paper is on the lines of the following: ”Gb11 used Hulten’s theorem to argue that the

existence of very large, or in his language granular, �rms can be a possible source of aggregate

volatility. If there exist very large �rms, then shocks to those �rms will not cancel out with shocks

to much smaller �rms, resulting in aggregate �uctuations.” (D. R. Baqaee & Farhi, 2019).

A digression to mention with respect to this quote are that if looking at the aggregation of

sales and not of production, Hulten’s theorem is not necessary and value weight in aggregate

idiosyncratic volatility (which is the key here) stems from how the log curve and variance are

(see Section 2.7).7

�e issue that Gb11 is tapping into are the combination of concentration and the value

weighted contribution to idiosyncratic variance. If few largest �rms hold a signi�cant part of

the total, it is reasonable that shocks to them are an equally proportional part of idiosyncratic

volatility. �en it makes sense to regress aggregate volatility with shocks of largest 100 �rms

as explanatory variable, and in some cases Gb11 is cited in relation to this speci�c exercise.

�e paper of Gabaix (2011) however has a problem which is fatal when working with

aggregate variance. �e hypothesis of uncorrelated cross covariance among agents cannot be

applied if we are describing a population of economic agents because their micro �uctuations

are relatively large leading necessarily to comovements which are at the heart of what we seek

to study.8

7As a smaller digression, it is not about shocks of large �rms being cancelled by other shocks, but it is about
shocks to large �rms dwar�ng those to small �rms and so contributing more to idiosyncratic aggregate volatility.

8�ere has been another example where Farmer and Lillo (2004) failed to con�rm the results of deductions
of (Gabaix et al., 2003) because of correlation among agents existent in empirical se�ings has been overlooked.
To be fair, the dismissal of cross correlations is frequent and may be a problem in other papers. Acemoglu et al.
(2012) for example also throw the baby with the bathwater when they drop cross correlations (they look at the
trace of the cross covariance matrix, �rst equation of page 1988) while working with network propagation of
shocks, a problem where cross correlations are key.
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In the beginning of his paper Gabaix (2011) implicitly assumes �uctuations to individual

agents are small, linear and uncorrelated among themselves, which is not true for (and not

reconcilable with-) empirical systems. �e shocks σiεit do not follow the assumptions that are

asked of them. �ese issues are already a big warning sign. And the paper continues with a

step that is not valid in general and needs special care, which is taking the �rm level width of

deviations out of the sum where its multiplied by �rms’ value share. In this way we arrive at an

automatic connection between the Her�ndahl index (h) of �rm value shares and idiosyncratic

volatility (σ2
ε ), and relation h ∼ N−1+1/ζ deduced for h is taken to apply to σ2

ε .9

Gabaix then postulates a relation between volatility and population size, which would then

forcefully be an answer to the naive diversi�cation debate. Indeed it has been taken as such, a

few quotes are included in footnote. 10 �ese papers are just a small sample of the widespread

confusion related to understanding micro e�ects on aggregate volatility.

In this paper I followed the aggregation of agents’ �uctuations carefully from the micro

up to the aggregate level and I am able to show that the departure from the naive 1/
√
N

diversi�cation rule has nothing to do with the agents’ size distribution, contrary to the view

installed by Gabaix (2011). Understanding the dependence of aggregate idiosyncratic volatility

with population size is thus an issue still open. I show the departure from σε ∼ 1/
√
N is a

consequence of slower convergence of averages because micro �uctuations are multiplicative.

�is is potentiated by fat tails in agents’ �uctuations (Bo�azzi & Secchi, 2006; H. R. Stanley

et al., 1996). �e reader is encouraged to not believe this and see it for themselves with the

help of this paper.

It seems to me that before Gabaix (2011) there was a consensus on the intuition that con-
9here h2 =

∑
i(Si/X)2 and ζ is the power law of the Pareto size distribution, such that the probability density

function of �rm sizes is p(x) = ζxζm/x
ζ+1 and so its counter cumulative density function is c(x) = (xm/x)ζ

10Some of the quotes of Gabaix, 2011 as replying to the diversi�cation argument are:
”Gb11 demonstrates that aggregate �uctuation decays much more slowly in an economy with a fat-tailed �rm-size

distribution, contradicting the diversi�cation argument put forward by Lucas.” (Nguyen et al., 2020)
”Gb11 shows how aggregate �uctuations can be generated by �rm-speci�c shocks in an economy with a heavy-

tailed distribution of �rm size.” (Kogan & Papanikolaou, 2012)
”Gb11 and Acemoglu et al. (2012) derive conditions under which these heterogeneties can generate aggregate �uctu-

ations from idiosyncratic or sectoral real shocks invalidating the diversi�cation argument of Lucas (1977). […]. Gb11
and Acemoglu et al. (2012) show theoretically the network structure and the �rm size distribution are potentially
important propagation mechanisms for aggregate �uctuations originating from �rm and industry shocks.” (Pasten
et al., 2019)

”Gb11 demonstrates that aggregate �uctuation decays much more slowly in an economy with a fat-tailed �rm-size
distribution, contradicting the diversi�cation argument put forward by Lucas.” (Guiso et al., 2016)
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centration together with value share weights means that few agents can drive the aggregate

time series regardless of how many agents there are in total. And the community found in

Gb11 a paper that could symbolise this idea.

�e answer of Gb11 to the diversi�cation debate however has established important mis-

conceptions. Mostly, a link between size distribution and the decay of volatility with pop-

ulation size which does not exist in reality. An important role in this story however, was

played by the research community. Of the papers who cite Gb11 the large majority focus on

issues unrelated to the problem of understanding aggregate variance. No paper was dedicated

to con�rming, replicating, revising, re�ning or rejecting (in short, studying any further) the

proposed dependency of aggregate idiosyncratic volatility with population size which is the

core of what the paper claims (apart from being a clear relation to measure, and an important

one).1112

In this work thus, we will follow the aggregation of agents �uctuations from scratch and

decide for ourselves what elements of previous studies are pointing to actual mechanisms and

what other elements should be reconsidered.

2.3 Data and methods

2.3.1 Data

Aggregate �gures of international trade are composed of the export and import transactions

undertaken by a large population of �rms (apart from purchases by consumers, not considered

in this analysis). Our main source of evidence are the records of French customs. Datasets from

this source have been used widely in recent studies in international trade. For documentation

regarding this dataset see eg. Bergounhon et al. (2018). �e full data set covers all transac-

tions that involve a French exporter or importer. �e data spans along the 1997-2013 period

monthly, although once I have con�rmed that most volatility is of annual or lower frequency

(cf Appendix, section 2.13), I use the annual time series as reference. Once the variance ac-

counting vs. frequency has been clari�ed, using annual time series has the bene�t of implying
11320 papers tagged in the Scopus database up to November 2020.
12Counter examples I may have missed are welcome.
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a smaller computational burden. 13

Between the years 1997 and 2013, a total of 114000 �rms have reported sales of about 8970

products (CN 8 digits), to 442000 buyers in up to 234 destinations. Notwithstanding this large

amount of diverse transactions, only 5233 �rms account for 90% of the exported value, the

same way that 1845 products (CN 8 digits, 333 CN 4 digit products), or 11869 buyers or 42

partner countries do. Indeed high concentration is a known characteristic of the international

trade landscape. On the side of imports, 9159 �rms account for 90% of the traded value, the

same way that 2107 products (CN 8 digits, 334 CN 4 digit products), or 36 partner countries do.

Detailed custom records information have become available only recently. �ere is therefore

some necessary novelty in the outcomes of this study.

Results computed from exports data are largely equivalent to those computed for imports

data. In some cases I show them both. If instead only results from one of these �ow directions

is shown, it can be assumed that the opposite �ow shows essentially equivalent outcomes that

would be redundant to display.

2.3.2 Methods

�is paper is centered on determining the formal relations between micro characteristics of

sales time series of a large population of agents and the moments of the time series of ag-

gregate sales that result of them. �is goal could potentially be achieved through analytical

developments only, although this would be practically impossible if we did not use empirical

evidence to constrain our formal path.

I control the validity of every formal step drawing empirical evidence from our reference

system, the population of French traders. Empirical data lets us decide on the validity of key

conditions, and from there on the validity of certain equations.

I also complement some of the formal developments with computational experiments. One

of these, for example, involves drawing random vectors x and studying the average of 10x,

as a function of a variety of parameters. �is problem is at the heart of what we seek to
13As further details of the data preprocessing: before 2010 transactions below 1000 EUR did not need to be

reported. To avoid distortions from the removal of this rule in 2011, we drop all transaction below 1000 EUR
along the full timespan. For extended technical review of the dataset see Bergounhon et al. (2018).
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understand in section 2.8, but its general study is not quite simple. In this case, empirical

conditions constrain the relevant ranges of parameter values and simplify the problem. �en,

the computational tests o�er answers that should be achievable formally.

A �nal way in which empirical evidence is exploited is by the study of multiple counter-

factuals. We count with time series of sales at the �rm level for tens of thousands of �rms.

�en, for example, we can sample an increasing number of �rms from this total population and

measure aggregate moments as a function of population size. Or, we can let all �rms be �xed

at their average level when they are active, and so we would have an account of changes due

to entry and exit events. We could measure the dependence of aggregate volatility with the

magnitude of �rm level deviations from their mean levels, or we could test the consequence of

changing the shape of the �rm level �uctuations of the shape of the size distribution. Of course,

randomized steps can lets every con�guration be repeated multiple times thereby o�ering a

measure of uncertainty on any of these results to be derived.

�is exercises however are best exploited if there is a formal framework that guides the

details of how each experiment is performed and where to look for the evidence on a speci�c

mechanism that one is seeking to measure. �at is why, all in all this paper reaches its re-

sults informed by the empirical benchmark of French traders, and complementing analytical

developments with computational exercises.

�e codes for reproducing computational results are in the dedicated GitHub repository.

Pseudo codes for all experiments are in Appendix (section 2.15).

2.4 Key empirical features: distribution of �rm sizes and

�uctuations

Characteristics of the distribution of �rm sizes and their �uctuations decide what type of prob-

lem we have in hands and what path we will have to follow to understand it. �is is why we

begin by reviewing these two fundamental characteristics of the population of �uctuation

French traders. �ese size distribution and the distribution of logarithmic growth rates of

populations of economic agents have been observed in contexts such as measuring �rm sizes
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by employment level, or by total sales, including domestic sales, in di�erent regions and over

time. �e key feature observed across multiple populations of economic agents is that both

their sizes and their multiplicative growth rates are distributed nicely on a logarithmic scale.

�is property, which so far is universal and robust, determine much of the steps that we will

have to follow in this paper.

2.4.1 Size distribution of �rms

�e size distribution of �rms in the French traders dataset is plo�ed in �gure 2.1 (le�: Ex-

porters, right: Importers). �e distributions of multiple years is superimposed. Blue and yellow

dots draw the distribution of number of agents by size bin, and traded value by size bin. �e

scale of the plots is log-log, log-normal size distributions thus appear as a quadratic parabola.

Figure 2.1: Distributions of agents sizes (blue) and value (yellow). Exports (le�) and imports (right). Log log
scale, parabolas stand for log-normal distributions. Data of years 1997 - 2013 superimposed. Right insets show
the mean and standard deviation over time as implied by parabolas OLS �ts. Population data is ��ed and value
data is deduced by computing a �rst moment.

It is evident that the size distribution of French traders is compatible with a log-normal

distribution14 and this is in line with previous evidence of populations of economic agents. 15

16

14Truncated at the minimum value x = 3.
15�is work does not dedicate to study the size distribution in detail, only to understand its main features.
16Strict interpretations of pcnt(s) as exactly log-normal forced debates (cf Prais 1973) asking for example

whether a perfect lognormal can be a stationary state stemming from modeled micro shocks. However mod-
ern day evidence shows us that there is some dri� and widening of the ��ed lognormal parameters over the
years (right inset in �gure 2.1), so it is debatable that the size distribution stationary a�er all. Still this widen-
ing should be far larger if �rms would do random log jumps as in a brownian motion, suggesting that negative
autocorrelation of shocks plays a role as stabilizer of agents’ time series.
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A log-normal size distribution implies concentration of signi�cant part of value among

the few largest agents. Indeed, for French traders 90% of exports are concentrated by �rms

exporting more than log(s) = x, and 90% of imports are concentrated by �rms importing

more than log(s) = x.

If we restrict to these subsets of largest agents, a Pareto (power law) rule is also partly

compatible with the observed size distribution. In this sense, a log-normal and a Pareto rule

are not contradictory descriptions of the size distribution of �rms. A Pareto model means a

linear approximation to the upper tail (right end) of blue dots in plots of �gure 2.1. �e Pareto

power law then can be a practically useful model for studying consequences of the shapes of

size distributions, regardless of whether it is completely accurate empirically. 17.

Similar to a log-normal, a Pareto size distribution implies concentration. �ey both lead to

the familiar near 80% - 20% concentration rule.

In the remainder of this subsection, let us formalize the description of size distributions a

li�le further.

Consider a histogram telling how many agents one can �nd with total sales in each inter-

val [s̄b, s̄b + ds) of a partition of the real numbers. �e total number of �rms is the sum of

population of all bins N =
∑

bins nj . If ds is small enough, we can approximate the sizes of

�rms by s̄b. In such case the total value associated to the �rms in the bin is Sb = nbs̄b. �e

sum of total value disaggregated by �rm size is:

X =
N∑
j=1

sj =
∑
bins

Sb ≈
∑
bins

nbs̄b (2.1)

Let us denote �rm sizes in linear scale as s and the normalized probability density function

(PDF) of �rm sizes as pcnt(s). Similarly, there is a PDF of value: pval(s). Equation 2.1 in the

continuous limit is:

X =

∫
X pval(s) ds =

∫
N pcnt(s) s ds (2.2)

Where value X and population N appear linked by the fact that the �rst moment of value of
17Broido and Clauset (2019) discuss a similar situation in applications to network theory whereby which scale

free networks may be less frequent than log-normal degree distributed networks but are anyway interesting as
benchmarks.
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the population distribution is the zeroth moment of the value distribution. If one integrates

this, note that s̄ ≡ E[s] =
∫
s pcnt(s) ds are the average �rm sales, and of course X = Ns̄.

But also for each particular size bin: Sb ≈ nbs̄b.

�e integrands in equation 2.2 tell us:

Xpval(s) = Npcnt(s) s (2.3)

For a given value s, the amount vx = X . pval(s) = N . pcnt(s) . s is how much the holders

of such sum hold altogether. For example if n2 = 103 people hold 100 dollars (102) each, this

group has v2 = 103+2 = 105 dollars. 18

From equation 2.3 one can see the distribution of �rm sizes pcnt(s) determines the distribu-

tion of value pval(s). For example, use the log variable t in place of the linear s, i.e. s = 10t =

eln(10)t. As a function of the log levels t the size distribution is: pcnt(t) = N (µ, σ) ∼ e−a(t−µ)2

. �e product of pcnt(t) and 10t (as in eq. 2.3) means summing their exponents. And note that

a parabola (fromN (µ, σ)) plus a line (from t) lets the distribution of value pval(t) be a shi�ed

parabola N (µ+ ln(10)σ2, σ) (see Appendix for details). �is is why the distribution of value

is log-normal if distribution of agents sizes is lognormal19. �e fact that the variable in the

horizontal scale is 10t is what is causing the shi� ln(10)σ2 and thus the concentration of value

in the hands of the large agents.

Indeed, one can say the single most crucial characteristic of empirical distributions of �rm

level sales is that they are de�ned most easily with a log scale on the horizontal axis. �at is,

as log variates easily expressable as 10C(·) with C(.) a normal distribution, or an exponential

decreasing distribution (Pareto rule). �is has been observed consistently over time in a variety

of populations of economic agents, and is a key feature for the problem we are studying.

World trade split by di�erent categories (by partner country, by product categories, by

partner foreign �rm) also show log-normal distributions and log �uctuations, which suggests
18If two other groups of, for example n0 = 104 people holding a dollar (100) each, and n4 = 1 = 100 person

holding 10 thousand dollars (104) these hold respectively v0 = 104+0 = 104 and v4 = 100+4 = 104 dollars. �e
numbers in the exponents have to do with the vertical level of the parabolas in �gure 2.1. �is feature has to do
with the slopes in between the log-normal distributions of population and value and may be important as it is
essentially depicting a scenario of concentration.

19In fact, in �gure 2.1 the yellow lines come from this analytical expression and not from an OLS �t to the
yellow points.
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many of the tools we develop as applying to agents can actually be used in a wider scope.

2.4.2 Firm level �uctuations

If �rm sales are expressed in logs, it is natural to describe their dynamics as changes in log

levels. We show the observed distribution of year on year log di�erences in plot of �gure 2.2.

�ree plots are used to show growth rates for the smallest �rms concentrating up to 25% of

the value, intermediate size �rms accounting for the next 25% of sold value and largest �rms

concentrating 50% of the value. Results for exports and imports largely overlapping in each of

the plots. �e scale is Log log, so that a double exponential (Laplace) distribution would look

as ∼ −|x|, normally distributed log shocks would appear as ∼ −x2 and on the contrary, for

large �rms we observe a ∼ −|x|c with 0 < c < 1. We see nearly symmetric �uctuations.

Figure 2.2: Fluctuations as log di�erence from previous period. Small (le�) medium (mid) and large (right) �rms.
Exports and imports data are mostly overlapping. Vertical gray lines show smallest shocks accounting for half of
the growth and half of the shrinkage. Fat tails are important but small log-normally distributed shocks are also
present and account for a signi�cant part of �uctuations.

Very importantly, note that for computing total sales by �rms k at a time t, we would

want to know the terms in
∑
Skt. �is can be reconstructed by knowing the initial value Sk0

and accumulating the log shocks up to t. �is can be called the growth rates accumulation ap-

proach. Unfortunately, reconstructing the time series of levels of a �rm solely from the general

distribution of log di�erences would be a mistake because we would be not acknowledging

autocorrelation structures that indeed exist. In most empirical se�ings there is a mild nega-

tive one-step auto correlation of log shocks, so that growth events are more likely followed by

shrinkage events and vice versa.

To avoid this complications we can instead express the information of �rm sales levels as
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deviations from a stationary (or average) value. In this case we do not need to accumulate a

time series of log growth rates any more. We observe this directly from the empirical data (�g.

2.3). It would not be easy to derive analytical expressions for these distributions, but we do

not need them.

Figure 2.3: Fluctuations from mean D(·). Small (le�) medium (mid) and large (right) �rms. Exports and imports
data are mostly overlapping. Vertical gray lines show smallest shocks accounting for half of the growth and half
of the shrinkage. �ese �uctuations acknowledge accumulation of successive growth rates and they are to be
used directly in accounting.

�e values with distribution illustrated in Figure 2.3 are what we call �uctuations, to dis-

tinguish them from log jumps shown by agents (as in growth rates). Take these distributions

(call it D(.)) as the large numbers limit distribution of deviations of a �rm from its average

value s̄. If one wanted to sum the value sold by this �rm over time, one would need to sum

the values s̄10D(.). Analogously, if D(.) is the limit distribution of deviations for a population

of �rms at any given time step from their mean s̄, then one would also need to sum s̄10D(.) to

know total sales at each time step.

All in all, expressing the information on �rm levels over time as �uctuations has double

advantage: we avoid the problem of accumulation of auto correlated time series, and also their

powers are exactly what one needs to sum to obtain aggregates.

Same as with size distributions, the single most important feature of �rm level �uctuations

is that they adapt naturally to a description of the type 10D(.), where D(·) is usually a mixture

of gaussians. In other words, they appear nicely when the horizontal axis is in log scale. �is

is the most important characteristic of agents’ �uctuations and determines the formal path we

can follow to aggregate them.
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2.5 Mathematical framework: Aggregate volatility in log

scale

�e system we study in this work is a population of agents i that in time periods t contribute

an amount sit to total exports or imports Xt =
∑

i sit. For practical purposes I call sit and Xt

as sales of �rm i at time t, even if referring to exports or imports and not to domestic sales.

�e expected total sales from the population of agents is E[Xt]. �is paper is dedicated to

understanding how the variance of the time series of the total var[XT ] can be expressed in

terms of parameters describing the population of agents. �is is a challenging but necessary

task that so far has not been pursued completely.

�e aggregate variance var[Xt] can be used as measure of the width of �uctuations of

aggregate sales, by taking its square root to arrive at the standard deviation of Xt . �at is:

var1/2[Xt] = std[Xt]. In practice however this square root complicates aggregation, so that it

is far more convenient to work with var[X] and leave the square root for the very last step.

�is is why throughout this work I focus on var[X] as measure of volatility.

In the preceding section we have seen that agent sales and their �uctuations are best de-

scribed in a log scale. In the remainder of this section I will review how �uctuations expressed

in log levels should enter into expressions of variance accounting.

2.5.1 Easy facts about volatility

We start by having a time series Xt of length (dimension) T .20 An estimator of its mean value

is X̄ ≡
∑

tXt/T .

For accounting deviations of the elements of Xt we will look at their di�erence to the

sample mean value. We will de�ne this as (∆X)t ≡ ∆X ≡ Xt − X̄ .

�e unbiased sample variance of Xt is:

var(Xt) =

∑
t(∆X)2

T − 1
(2.4)

and works as estimator of population variance of the time series. �e biased sample variance
20In our case, T = 2014− 1997 = 17. See section 2.3 for data details.
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is ˆvar(Xt) =
∑

t(∆X)2/T . In a Normal iid distribution the variance we compute on a �nite

sample of length T is related to the variance at the large T limit by:

lim
T→+∞

var(Xt) = var(Xt)(T − 1)/T = ˆvar(Xt)

In this work we use sample variances computed on time series of length T = 17, unless

otherwise stated. �en for us: var(Xt) = 1.0625 ˆvar(Xt). 21

�e expression of total as linear combination (X ≡
∑

k Sk) is very general. �e compo-

nentsSk are time series that add up toX but they can represent individual agents, or otherwise

groups of agents (sectors). I use the name parts to refer to components that add up to X , but

where it does not lead to confusion I call them sectors.

�e aggregate variance is the sum of cross covariances among the time series of these parts.

�is is:

var

[∑
k

Sk

]
= cov

(∑
k

Sk,
∑
k

Sk

)
=
∑
k1,k2

cov(Sk1 , Sk2) (2.5)

�is property is very important as it is a general expression of aggregate sales variance in

terms of the covariances among its parts. It is valid regardless of the details of parts’ �uctua-

tions and their cross correlations. In it we have introduced the sample covariance operator:

cov(Sk1 , Sk2) =E [∆Sk1,t ·∆Sk2,t]T/(T − 1)

≡
∑
t

((
Sk1,t − S̄k1

) (
Sk2,t − S̄k2

))
/(T − 1)

(2.6)

Aggregate variance is the total of all those elements. In the same way that the total sales

need to include all agents’ sales for an exact match.

2.5.2 More about partitions

If �rms are grouped into a family of non overlapping subsets called parts (akin to sectors).

Both aggregate sales, and their variance are de�ned in analogous way for �rms and sectors

(eg. change the index).
21�is factor would be needed when comparing volatilities measured in di�erent studies.
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Xt =
∑
k

Skt =
∑
p

Spt

with indices k representing �rms and p representing parts. Partitions could be given by

any criteria: industry sectors, geographical regions, random allocation or others.22 23

�ere are two types of partitions that will be specially useful due to their formal properties.

�ese are equal weight partitions and quantile partitions.

Ideal equal weight partitions are those in which the value held by any P parts is the same

and so it is S̄p = X̄/P . In practice, this condition may not be achievable in precision but it

is likely that we can separate the �rms in parts with weights quite close to X̄/P for practical

purposes. Apart from this condition, the assigment to parts can be randomized. We can use

the name random partitions to refer to this case. Equal weight parts may simplify accounting.

A size-sorted equal weight partition (or quantile partition) is an equal weight partition into
22�ere is the possibility to de�ne partitions on the sets of buyer �rms as well as seller �rms. �is is amenable

to a network for cross accounting of sales. If we use the indices p, r for referring to a pair of parts, then total
sales expressed from exchanges between parts and exchanges between �rms are given as:

X =
∑
p, r

spr =
∑
p, r

∑
k, l∈p, r

skl

All of the sales of �rm k are associated to a �rm l on the other end.

X =
∑
k

Sk =
∑
k, l

Skl

Here S represent the value of sales, k and l represent a pair of �rms.
23For the sake of completeness we can de�ne an atomistic micro level that adds up to our �rms ’micro’ level.

It is clear that the sales between a pair of �rms during a given time period can in turn be disaggregated into
transactions i, made of sales of items j in quantities qj at prices pj . �e value of a transaction sj is in units of
currency which arises from s = p.q. Here, p and q area measured in terms of conceptual units that ’cancel out’
at s = p.q. All aggregation is therefore in units of currency. In general the price can be assigned to each item j
when observed. We do not need to assume that they belong to a product or that they are a function of time, or
that they are the same for di�erent pairs of agents exchanging the same product.

Sk =
∑
i

ti =
∑
i

∑
j∈ti

pjqj

So that prices and quantities in a collection of transactions from �rm k determine the observed time series for
sales from �rm k, i.e. Sk .

In this work however we take Sk as given and study the aggregation up to the national level. In this picture,
�rm level sales and atomistic items exchanged still relate exactly in an ordinary sum.

X =
∑
k

Sk =
∑
j

pjqj

From here one would have an aggregation involving prices.
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Q parts with the condition that �rms have been sorted by size before cu�ing them into the Q

groups. �e total sales of each partition is near S̄q = X̄/Q. With a large enough number of

parts (typically Q = 10, 20) it is likely that �rms in most parts are quite close to a mean size

(s̄q).

We would expect that S̄q = X̄/Q = s̄qnq where nq is the number of �rms in quantile (part)

q. �e mean size s̄q grows monotonically in successive parts q, then the quantile population

nq must decrease monotonically (overall keeping the quantile value �xed near S̄q = X̄/Q).

In fact, both of them can be taken as a function of the percentile q. �erefore quantile parts

tend to have a de�ned agent size and population size, this is the feature that makes them very

useful. �ey also allow working with micro moments that can be functions of agent size, and

as such become functions of quantile q.

2.5.3 Simple structure of sectoral sales

Assuming a structure for the time series of sectoral sales means de�ning it as a sum of time

series that partially make it up. As an example, ��ing sectoral sales with a generic spt leads

to Sp = β̂pst + rpt and an expression of aggregate variance (sum of elements of the cross

covariance matrix):

var(X) =
∑
ij

cov(Si, Sj) =
∑
ij

cov(β̂ist + rit, β̂jst + rjt) (2.7)

where β̂p are elements of β = (sTt st)
−1sTt Y , with Y ∈ RT×P containing the observed

parts’ time series and st is a column vector with the time series used to �t. It can be z-

standardized so that cov(st, st) = 1 (see �gure 4). 24

�e elements of the cross covariance matrix will look like:

cov(β̂ist + rit, β̂jst + rjt) =cov(β̂ist, β̂jst) + cov(β̂ist, rjt)

+ cov(rit, β̂jst) + cov(rit, rjt)
(2.8)

so that each of the P × P elements is made of four components. In general, a structure of
24A speci�c example: if we �t (OLS) using a factor of linear time evolution st = t, then: Spt = β̂pt+ rpt, the

βp is as described and rpt are the residuals of the �t.
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sectoral sales made from N terms leads to N ×N terms making up each element of the cross

covariance matrix.

�e β̂ coe�cients are thus arranged into a column vector β̂ of length P , and the standard

deviation of residuals σ in the column vector σ̂ of length P . �e matrix product β̂β̂T creates

a P ×P matrix (it is an outer product), and the cross covariance matrix among sectors can be

wri�en as:

C =β̂β̂T · C(st, st) + β̂σT · C(st, εt)

+ σβ̂T · C(εt, st) + σσT · C(εt, εt)
(2.9)

where C(a, b) denotes the P × P cross covariance matrix computed from vectors a, b. �ey

are multiplied to the outer product matrices element wise.

= ×

Figure 2.4: Structure of cross covariance matrix (N ×N blocks with elements made of outer product times net
covariance). Illustration from simpli�ed toy example where sectoral time series are decomposed into dependence
as mean time series (��ed by OLS) and residuals.

�is structure of the cross covariance matrix as an elementwise product of an outer product

matrix and a net cross covariance is illustrated in Figure 4.

Here we are seeing that aggregate variance is made of a comovement contribution and an

idiosyncrasies contribution, apart from cross terms that o�en can be expected to not contribute

signi�cantly.

2.5.4 Non linearities

Fluctuations of the level of agents given in logarithmic scale imply nominal contributions

from di�erent agents given by an exponential function. When we talk about nonlinearities in

this work we are essentially referring to the fact that the levels we need to add are along an

exponential curve. Let us introduce general properties of a logarithmic transformation.
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We know 100 extra EUR sold by some �rm translate directly to aggregate exports, we also

know that this is in some sense ’insigni�cant’ given that total exports can easily be over 100

bn EUR. �is insigni�cance can be formalized noting that the ratio between the two levels is

1.0000001, i.e. aggregate exports are largely the same a�er the 100 EUR. Indeed, computing

ratio to a base level is a good way of abstracting changes from the nominal scale. As such,

St/S0 (in the last example (109 + 102)/109 = 1 + 10−7) is a useful transformation.

Alternatively, pondering equal multiplicative changes to X as equally important (as op-

posed to considering their additive magnitude) is what we get by evaluating additive changes

of a logarithmic transformation of X , denoted log(X).

For practical purposes we can treat log(z) : R → R simply as a nonlinear function that

can be approached by a Taylor series. �e base is 10, unless otherwise stated. Its Taylor series

about z0 tells us:

log(z) ln(10) = log(z0) +
∑
n≥1

(−1)n+1(z − z0)n/(n z0)

where the factor ln(10) ≈ 2.3026 is the natural logarithm of 10. 25

�e expansion of log(z) (base 10) at z0 = 1 up to the �rst order:

(z − 1) ≈ ln(10) log(z)

�is relation can be brought to practical use if we identify z = Xt/X̄ ≈ 1, in which case we

get to:
Xt − X̄
X̄

≈ ln(10) log

(
Xt

X̄

)
⇒ ∆X

X̄
≈ ln(10)∆(log(X)) (2.10)

�is relation is extremely important as it is telling us the connection between small nominal

deviations from the stationary level X̄ , percentage change factors and logarithmic �uctuation.

�is connection is of course widely exploited, however less a�ention is placed to the equally

important ability of knowing when eq. 2.10 does not apply, which indeed is fairly o�en as
25�is factor appears repeatedly and originates from our use of the base 10 instead of natural logarithms. We

use the base 10 because it allows simple interpretation of log levels (6 = 1 mn EUR, 9 = 1 bn EUR and so on). We
have to consciously carry the ln(10) factor along calculations. It helps developing intuitions by seeing where the
choice of the base 10 over the base e plays a role.
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well.

Approximating the log curve at z0 = 1 to the second order tells us: log(z) ln(10) ≈

(z − 1)− 1
2
(z − 1)2, we then have:

(z − 1) ≈ ln(10) log(z) +
1

2
(z − 1)2

�erefore for a rough condition for the �rst order approximation to be valid we should ask

that this last second order term is not very large:

(∆X/X̄)2/2� 1

�e second order error term is about 0.005 for deviations of about 10% and 0.1 for deviations

of 50%. It means that for time series that �uctuate on the order of 10% or less it is safe to use

equation 2.10, but it would not be recommended for more volatile time series.

Next, let us characterize the inverse of log(z). Let us de�ne logarithmic �uctuations as:

Ft ≡ log

(
St
S̄

)
(2.11)

where because we can refer to sectoral sales (not only aggregate sales) we have introduced

S in place of X . Inverting this relation we have:

St/S̄ = 10Ft (2.12)

From there, subtracting 1 on both sides, we can express additive deviations ∆S in terms

of logarithmic �uctuations:

∆St/S̄ = 10Ft − 1 (2.13)

�is is the exact relation between nominal additions and logarithmic �uctuations observed

in a time series. A Taylor expansion of this exponential curve brings us back to the approxi-

mate expression in 2.10. Indeed: 10Ft − 1 = ln(10)(Ft) + 1
2

ln2(10)(Ft)
2 +O(Ft)

3. So that up

to �rst order:
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∆St/S̄ ≈ ln(10)Ft (2.14)

which needs at least that: 1
2

ln2(10)F 2
t � 1. �is means we would need these log �uctuations

to be Ft ≈ .1 or smaller. �is condition is usually met by aggregate sector �uctuations, but

not by �rm level �uctuations.

2.5.5 Mean and variance of transformed random variables

If we knew the moments (expected value E[X] and variance var[X]) of aggregate sales, can

we estimate the moments of the logarithm of aggregate sales? �e answer is yes, and the

method for this is straightforward. We can consider a Taylor expansion for the moments of

f(x) := log(x), which is a function of a random variable X . Using that the �rst and second

derivatives of f(x) are: f ′(x) = 1/(ln(10)x), f ′′(x) = −1/(ln(10)x2), the expected value and

variance of log(X) must be approximately:26

E [log(X)] ≈ log(E [X]) +
f ′′(E [X])

2
var [X] = log(E [X])− 1

2 E [X]2 ln(10)
var [X] (2.15)

var [log(X)] ≈ (f ′(E [X]))
2

var [X] =
1

(ln(10)E[X])2 var [X] (2.16)

To know the order to which we should approximate a variable we need to consider the mag-

nitude of its �uctuations. IfX stands for gross exports (imports) of a large national economy it

is safe to keep up to linear terms in the expansions of moments so that E [log(X)] ≈ log(E [X])

and var [log(X)] is expressed up to the terms of the series as in eq. 2.16.

In the situation of equation 2.16 var [log(X)] and var [X] (log and linear variance) can be

taken as proportional to each other. We can easily distinguish them because σ2(log(X)) ∼ 1

while σ2(X) ∼ 1020 if X̄ ∼ 1011 in EUR.

Note also that:
26we have dropped the subindex of Xt for simplicity
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Firms Sector(part) Aggregate

large �uctuations small �uctuations

level di�s

variance

lin

log

lin

log

∆Sp ∆X

Fp ≡ ∆ log(Sp) ∆ log(X)

cov(Si, Sj) var(X)

cov(Fi, Fj) var(log(X))

10Fk

group of �rms def:

Eqs 2.33, 2.35

mean levels:
E[s∗D]: Eqs 2.37, 2.38

E[log(s∗D)]:
Eqs 2.39, 2.40

Figs 2.9, 2.10, 2.11

var of means:

var[s∗D]:
Eqs 2.43, 2.48, 2.50

Figs 2.15; 2.12

var[log(s∗D)]:
Eqs 2.54, 2.56

Eq 2.13

Eq 2.4

Eq 2.10Eq 2.11 Eq 2.19

Eq 2.18

Eq 2.6

Eq 2.21

Eq 2.16

Eq 2.5

Eq 2.22

Figure 2.5: Scheme for the equations describing di�erences and variances of linear combinations, in linear and
log scale.

var

[
X

X̄

]
=

var[X]

X̄2
≈ ln2(10) var[log(X)] (2.17)

�e variance of log levels is closer in magnitude to the variance of (Xt/X), but for a factor

ln2(10) ≈ 5.3. If the higher order terms of equation 2.16 are small.

�e scheme in �gure 2.5 o�ers an overview of the relations laid out in this section.
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2.6 Firms are not Sectors

As we have noted the total Xt can be expressed as sum of parts in the same way that it is

expressed as sum of �rm level sales:27

Xt =
∑
k

Skt =
∑
p

Spt

where k, p index �rms or sectors respectively. Nominal �uctuations of the aggregate can of

course be also expressed as aggregations of �rms levels and sectoral levels.

Xt

X̄
− 1 =

∆Xt

X̄
=

∑
k ∆Skt
X̄

=

∑
p ∆Spt

X̄
(2.18)

Aggregate �uctuations are usually mild enough to allow a linearization of their log deviations

(eq. 2.16).

ln(10) log

(
Xt

X̄

)
≈ ∆Xt

X̄
=

∑
k ∆Skt
X̄

=

∑
p ∆Spt

X̄
(2.19)

Without loss of generality we can register the observed deviations from mean levels in

log scale, that is, as Ft with Fpt = log(Spt) − log(S̄p) for part p, and in an analogous way

Fkt = log(Skt) − log(S̄k) for �rm k. Usually one would expect that Ft are small, near null

�uctuations. For example it could be that Ft = mkt +σkεkt with mkt � 1 and εkt a time series

of random shocks centered in zero and with std(εkt) = 1.

�is de�nition of �uctuations implies St = S̄10Ft , both for sectors and �rms. And so the

nominal �uctuations are ∆St = St − S̄ = S̄(10Ft − 1), as in equation 2.13. �is step is the

key to match log shocks that one observed to nominal shocks that one needs to account for.

�e relation between log aggregate sales and log micro shocks to �rms or sectors is then:

ln(10) log

(
Xt

X̄

)
≈ ∆Xt

X̄
=
∑
k

S̄k
X̄

(10Fkt − 1) =
∑
p

S̄p
X̄

(10Fpt − 1) (2.20)

We will get a substantial idea of what is going on, however, if we consider what are the actual
27In this section I may use the name sector or parts indistinctly to refer to groups of �rms as introduced in

section 2.5.2.
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magnitudes that these Ft have in each of the cases. And for this, refer to �gure 2.6 where on

the le� side we have the distribution of Fkt observed in �rms, and on the right, the aggregate

lo �uctuations (top) the Fpt �uctuations observed in a random partition into P = 10 parts

(mid), and the Fqt �uctuations observed in a quantile partition into Q = 10 parts (bo�om).

�e horizontal axis is for log �uctuations and the vertical axis is the magnitude of the nominal

�uctuations that these Ft imply. �e black lines are then an exponential curve (base 10) and I

show on red the approximations to these curves by polinomials of increasing degree.

Figure 2.6: Le�: distribution of log micro shocks and magnitude of nominal di�erences they imply. �e curve
is 10Ft , series approximations in red. Right: log �uctuations and nominal di�erences for the aggregate (top)
and groups of �rms arranged into P = 10 random parts (mid) and Q = 10 quantile parts (bo�om). �e linear
approximation for nominal di�erences can be used in these cases.

�e information to take from �gure 2.6 has to do with the magnitude of nominal di�erences

that log �uctuations imply. �e thicker curve is accumulating 75% of the total value, and the

thinner ones accumulate up to 90%. Log �uctuations of �rms are too wide to proxy the implied

nominal �uctuations by means of a linear dependence.

Sectoral �uctuations (10 parts) on the contrary are mild enough to allow this linearization,

and we can largely bene�t from this. Sectors will adapt to the following rule:

∆ log(Xt) ≈
1

ln(10)

∆Xt

X̄
=

1

ln(10)

∑
p ∆Spt

X̄
≈
∑
p

Spt
X̄
Fpt (2.21)
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where the rightmost term is now a linear combination, as opposed to a sum of nonlinear

functions as it used to be. 28

At �rm level, we have no option but to keep equation 2.20 and using equation 2.21 would

be grossly incorrect. If the micro shocks are too large the approach of using a Taylor series

for 10F will not work unless we include too many orders, which is not practical anymore.

If we can express log aggregate deviations as a linear combination of sectoral log deviations

as in 2.21 then by the properties of aggregate variance (especially 2.5) the following relation

will apply:

var(log(X)) ≈
∑
i,j

S̄iS̄j
X̄2

cov(Fit, Fjt) =
∑
i,j

S̄iS̄j
X̄2

cov

(
log

(
Si
S̄i

)
, log

(
Sj
S̄j

))
=
∑
i,j

S̄iS̄j
X̄2

cov (log(Si), log(Sj))

(2.22)

where indices i, j represent sectors. For the second line note that dividing by a �xed value S̄

before taking log does not change variance.

In this equation we have clari�ed how small log �uctuation Ft of parts of a total contribute

to variance of the log total (if these Ft are small enough). �is is the ’log equivalent’ of the

linear sum of variance rule var[X] ≡
∑

i,j∈P cov(Si, Sj).

Shocks to individual agents can easily reach a magnitude of σk ≈ .5 or larger. �is means

in a given year a �rm may sell a third (or three times) its value of average annual sales. In

those conditions ( and even with milder shocks σk > .1) expressions of aggregate variance as

in 2.22 are not valid. Using them is essentially a mistake and they may easily lead to incorrect
28If one wanted to draw a connection to aggregation under a production function, and so, a connection to usual

growth accounting notations, we could introduce h(X) = X and consider an expression of log derivative at a
�nite time step ∆t. �ere, h′(X) = ∆X/∆t and from h′/h ≈ d ln(h)/∆t one has ∆X/(∆t X̄) ≈ (ln(Xt) −
ln(X̄))/∆t = ln(10) log(Xt/X̄)/∆t, as in equation 2.21. We can ’cancel out’ the ∆t. �is has no problems
because we are determining how far a value is from a reference, independently of whether we frame it as time
evolution.

In a growth accounting equation there is also a production function Y (t) = F (x, t) and a di�erence in log
production is:

1

Y

dY

dt
=
∑
i

1

F

(
dF

dxi

dxi
dt

+
dF

dt

)
but our total is de�ned in as a simple sum, not a production function. In our case then dF/dxi = 1 ∀ i and
dF/dt = 0. We get directly to identity in eq. 2.18.
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results.

Still, the type of relation in equation 2.22 is assumed at the �rm level by Gabaix (2011) in

its equation 3. �ere is no guarantee that the right hand side in this equation is aggregate

idiosyncratic volatility because necessary conditions on εit are likely not met.

�e fact that a linear relation as in equation 2.21 does not apply for �rms is not caused

by having proposed Ft log shocks and therefore 10Ft nominal shocks. �e problem is implicit

in the distribution of the nominal shocks themselves. In real world se�ings if we say (as in

Gabaix’s eq. 1) that ∆Sit = σiεit, we can ask that var(εi) = 1 but these εit will be not at all

normally distributed. �ey will be highly asymmetric and not centered in zero. �is results in

that we will not know what cov(εit, εjt) are. Most certainly they will not be uncorrelated, so

that the whole path followed in this paper has no guarantees of adapting to empirical realities.

Fortunately, at least the log di�erences to stationary levels do show distributionsD(·) that

one can work with. �en expressing �rm level shocks as 10D(·) is then not a convention among

others we could choose from. Instead, it is the best open path for accounting micro shocks in a

correct way. Uniting 10D(·) micro shocks to aggregate volatility is viable although not exempt

from certain di�culty. �is path will be pursued in section 2.8.

2.7 Reviewing the diversi�cation issues

If a national (or global) aggregate time series is made of the sum of contributions from (N )

thousands or even millions of agents, why would not their idiosyncratic shocks cancel out?

�is intuition can be formalized as an expectation that the volatility of the time series

telling the total from a population of �uctuating agents should fall as σ ∼ 1/
√
N . Such is the

rate of decay observed in a population of agents showing additive gaussian �uctuations. �is

intuition has been invoked o�en. For an implicit reference, among many others, one could

mention the paragraph: ”… in a complex modern economy, there will be a large number of such

shi�s in any given period, each small in importance relative to total output. �ere will be much

’averaging out’ of such e�ects across markets.” in (Lucas, 1977)

But is the magnitude of aggregate standard deviation approximately 1/
√
N? And if not

why?
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A quick answer is that it is not because all agents can be growing or shrinking as part of

an ’aggregate shock’ of a magnitude larger than 1/
√
N . Still in Lucas (1977) we have: ”… there

have been many instances of shocks to supply which a�ect all, or many, sectors of the economy

simultaneously. Such shocks will not cancel in the way I have described, and they will induce

output �uctuations in the aggregate.”

�en, still, the question can be reformulated as referring to the idiosyncratic part of aggre-

gate volatility. Does this term follow a 1/
√
N rule? �e answer is it falls more mildly, but let

us approach this issue patiently because it is not as simple as it may appear.

Given a partition of the population of �rms into sectors �uctuating mildly enough (from

equations 2.5, 2.16, 2.21 and 2.22 in preceding sections) var[log(X)] is approximately:

var[log(X)] ≈ var[X]

(ln(10)E[X])2 ≈
∑
i,j

S̄iS̄j
X̄2

cov(Fi, Fj) (2.23)

where i, j are used to denote a pair of parts p.

Without loss of generality, sectoral log �uctuations can be expressed as Fpt = mpt +σpεpt.

In that case:

cov(Fi, Fj) = cov(mit + σiεit,mjt + σjεit) =cov(mit,mjt) + cov(mit, σjεjt)

+ cov(σiεit,mjt) + cov(σiεit, σjεjt)
(2.24)

In general, one should consider these as the P 2 elements to be summed to arrive at aggregate

variance. �ere are special cases where this expression simpli�es. �ese cases are relevant

as guides for analysing real life se�ings in practice, although one must not forget the speci�c

conditions that let them be derived from the general case.

On the one hand one can ask for uncorrelated shocks of unit variance, that is: var(εit, εjt) =

δij (Kronecker’s delta, 1 if i = j, else 0). A unit variance may be asked without further prob-

lems, given we have the parameters σj to capture the magnitude of idiosyncratic �uctuations.

�e independence of cross sectoral idiosyncrasies is however a qualitative limit case that may

not apply completely. �e le� hand side of Eq. 2.23 is so far:
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var[log(X)] ≈
∑
i,j

S̄iS̄j
X̄2

[cov(mit,mjt) + σjcov(mit, εjt) + σicov(εit,mjt) + σiσjδij] (2.25)

In addition, we could ask that the time series mpt are uncorrelated from idiosyncratic sectoral

shocks ( cov(mit, εjt) = cov(εit,mjt) = 0 ). Not just any mpt time series will ful�ll this

condition. �is actually constrains the scope of what we can take as an mpt. In practice, once

we have mpt candidates one can con�rm whether the terms cov(mit, εjt) are small enough for

the following equation to be valid:

var[log(X)] ≈
∑
i,j

S̄iS̄j
X̄2

[cov(mit,mjt) + σiσjδij] (2.26)

Here we have the aggregate shocks term adding to aggregate volatility. Both comovements

(aggregate shocks) and idiosyncratic shocks contribute, so that any of them can dominate.

As we mentioned, this possibility was contemplated all along. However, also note that the

proposed early solutions invoking aggregate shocks still assumed the idiosyncratic variance

is vanishing because of decaying at a rate σ2 ∼ 1/N , although empirical systems do show a

milder decay.

If all parts p shared a single mptterm:

var[log(X)] ≈
∑
i,j

S̄iS̄j
X̄2

[var(mpt) + σiσjδij] (2.27)

If all P parts are of near equal size: S̄p/X̄ ≈ 1/P , then performing the sum in Eq. 2.27 we

have:

var[log(X)] ≈
S̄2
p

X̄2
P 2var(mpt)︸ ︷︷ ︸

σ2
m

+
∑
p

S̄2
p

X̄2
σ2
p︸ ︷︷ ︸

σ2
ε

= var(mpt)︸ ︷︷ ︸
σ2
m

+
1

P 2

∑
p

σ2
p︸ ︷︷ ︸

σ2
ε

(2.28)

Linear variance is approximately var[X] ≈ ln2(10)X̄2 var[log(X)] (Eq. 2.16), so that:

var[X] ≈ ln2(10)

(
X̄2var(mpt) +

∑
p

S̄2
pσ

2
p

)
(2.29)
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In equation 2.28, the terms σ2
m ≡ S̄2

pvar(Pmpt)/X̄
2 and σ2

ε ≡
∑

p S̄
2
pσ

2
p/X̄

2 are respec-

tively aggregate and idiosyncratic shocks variances.

A combination of the fact that that contributions from a part p to idiosyncratic volatility

are proportional to the magnitude of this part (S̄p ) when it comes to var[X] (eq. 2.29) and to

the share (S̄2
p/X̄

2) when it comes to var[log[X]] (eq. 2.28), together with the fact that typical

size distributions (Pareto, lognormal) imply a concentration of a signi�cant piece of the total in

relatively few agents is what lets aggregate idiosyncratic volatility not be as low as σ2
ε ∼ 1/N .

�ese two features combine to let the sample variance of small groups of large agents

drive the idiosyncratic volatility seen on the whole population. For example, consider 100

companies are responsible for one half of the exports, and 10 000 companies are responsible for

the other half, we must not say naively that we have 10100 agents and so expect the population

idiosyncratic volatility to be σ̄/
√

10100 ≈ σ̄/100. Instead the two groups lead to a larger

standard deviation of the aggregate: σ̄(1/
√

100 + 1/
√

10000)/2 ≈ σ̄/18. In this case, there is

an e�ective Neff ≈ 330, smaller than N = 10100 when it comes to sample variance.

Note that this value weighted average leading to an apparently ’in�ated’ idiosyncratic vari-

ance can be conceptualized as e�ectively implying a smaller number of agents Neff < N in

the population. �e variance σ2
ε is higher because a small number of agents translate their log

�uctuations to the aggregate. However, very importantly note that this is not in itself a milder

decay rule σ2
ε ∼ N−α with α < 1.

Gabaix (2011) postulates a power law size distribution is responsible for a milder decay

σ2
ε ∼ N−α that may be a function of parameters of the size distribution. If we follow their

paper carefully however, we see this postulate is in fact derived for the Her�ndahl index

h2 =
∑

i(S̄i/X̄)2. By means of relations between the Her�ndahl and aggregate idiosyncratic

variance (eqs. 4, 5 in op. cit.) the property derived for Her�ndahl index is automatically as-

sumed to apply to aggregate idiosyncratic variance. I have discussed in previous sections how

it is a mistake to use linear expressions (Gabaix’s equation (3)) to aggregate agents volatility.

Even if we ignored this, equations (4) and (5) imply assuming that σk has a single value for all

agents, which takes us away from real life se�ings in an uncontrolled way. In other words,

if we have a sum of multiplied pairs of factors (sum of variance times value shares as in eq.

2.28) taking one of these factors out of the sum as if it was a constant will be misleading. It is
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possible that one can write σ2
ε = σ̄2h2 but nothing guarantees that this σ̄2 is the variance of

individual agents, and nothing guarantees that it does not depend with N which is precisely

the parameter on which we are trying to determine how σ2
ε depends.

�e Proposition 2 of Gabaix (2011) therefore needs to be restricted to Her�ndahl index

decay with population size and not to aggregate idiosyncratic variance. 29

�e important issue of knowing how idiosyncratic variance decays with population size

(and understanding the reasons why) has therefore been open all along, even if wrongly be-

lieved to be sorted out. It is interesting to note that hundreds of papers have referred to results

in Gabaix (2011), but so far I have found no citing paper dedicated to con�rming or study-

ing further the results in its Proposition 2, which are the main result of the paper. Is this an

indication by omission that the σ2
ε ∼ N−α relation proposed there is not observed empirically?

In the following sections I o�er tools for studying the problem of σ2
ε ∼ N−α dependence

carefully. A�er that, I show that this milder decay withN is explained by nonlinearities adding

to comovement terms among agents.

2.7.1 Dependence of var(X) with N

�e framework in this section is useful for approaching the problem of dependence with popu-

lation size (N). We denote a reference population size asN0 and consider a di�erent population

size N1 = k N0.

Figure 2.7 introduces the variables involved in this problem. A power law of variance with

N implies a linear relation between log(σ2)(= 2log(σ)) and log(N). Its slope is −α, and this

slope determines the ratio Dy/Dx. If we consider two populations, the second of which is a

multiple k of the �rst one, then Dx = log(k) and the di�erence between the variance that

these two populations show is given by −αDx = −αlog(k). In the following steps we use

these type of relations, and in addition we will consider that they can apply to parts of the

total, not just to the total population of the sample.

To link changes in total population to changes in parts’ population consider: if we sample

N1 = k N0 agents from a population, on average we expect that the population of each part p
29Still some other steps also need to be studied carefully. �e condition in equation (13), for example is very

sensible to the size distribution being exactly a Pareto, so that we may not count with it in many real cases.
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Figure 2.7: Scheme for analysing the decay of volatility with population size implied by a power law σ2 =
10cN−α.

is k np(N0), where np(N0) is the population expected at part p when the total population size

isN0. In logarithmic scale, this means that if log(N1) = log(N0) + log(k) then log(np(N1)) =

log(np(N0)) + log(k), for all parts p ∈ P . 30

Empirically we see that the dependence of a part’s log variance with changes in the part’s

log population can be approximated qualitatively by a line of slope −α.

log(σ2
p(np)) = c− αp log(np)⇔ σ2

p(np) =
10c

n
αp
p

(2.30)

�e accuracy of this model can be tested a posteriori. But what would it imply? When

changing np for knp, the levels of log(σ2
p) change as:

log(σ2
p(np(N0)))− αplog(k) = log(σ2

p(k np(N0))) ⇔ 1

kαp
σ2
p(np(N0)) = σ2

p(k np(N0))

If all parts p present a common αp ≡ α exponent, then when replacing this value in the

expression of the idiosyncratic term of aggregate variance, the dependence with α comes out

as common factor:

1

kα
1

P 2

∑
p

σ2
p(np(N0)) =

1

P 2

∑
p

σ2
p(k np(N0)) (2.31)

30On average, when population numbers are large enough, eg. np > 50.
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So that the relation shown by the parts is itself valid for the aggregate:

log(σ2
ε (N0))− α log(k) = log(σ2

ε (k N0)) ⇔ 1

kα
σ2
ε (N0) = σ2

ε (k N0)

�at is:

log(σ2
ε (N)) = c′ − α log(N)⇔ σ2

ε (N) = C ′N−α (2.32)

�is last equation is telling us that if we plot the idiosyncratic term of var(X) as a function

of population sampling size N in log-log they will show a slope −α.

Figure 2.8: Decay of idiosyncratic volatility with population size. As explained by the equations in this section,
if parts show a rate −α the aggregate must have this same decay rate. An OLS linear �t on the parts is shi�ed
in −1 = − log(P ) vertically because of the 1/P factor, and in +1 = log(P ) horizontally because the aggregate
has P times the parts population. �e OLS on parts then �ts the observations in the aggregate.

In the special case that all parts have the same variance σ2
p , we also have that the id-

iosyncratic part of aggregate variance ful�lls σ2
ε = Pσ2

p/P
2 = σ2

p/P . So that log(σ2
ε ) =

log(σ2
p) − log(P ). In our case P = 10, so that log(P ) = 1. �is determines the −1 variance

drop when comparing parts to aggregate in �gure 2.8.

What we have done so far is expressing the idiosyncratic part of aggregate variance both

as a function of total population N and as a function of parts’ population np. We see that

they both should show a common α. Empirically, the observed slope α of variance decay with

population size is αX = −0.48 for exports data, and αM = −0.49 for imports data. �ese

values were computed from parts’ variances (blue lines, Figure 2.8) and can be extended to

describe aggregate idiosyncratic variance by to equation 2.31 (yellow lines, Figure 2.8).
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�en, so far we can measure the rate of decay of aggregate variance with population size

(α). We know that the rate of decay of parts is related to the rate of decay in the aggregate.

But we know nothing about why this slope has the value it has.

In order to reach that, we need to look at what happens in the parts themselves. �is is

what we will do in the following section.

2.8 Aggregating a group of agents. Sum of powers.

We have seen what happens between the parts and the total, and now its time to see what

happens among the agents in the parts. So, we will take a closer look at groups of �uctuating

agents.

One goal is to understand a possible relation σ2
p = f(np) between the parts’ variance and

population. For example, we have seen empirically that idiosyncratic aggregate variance can

be described by σ2
ε = C ′N−α, as in Eq. 2.32.

Another dependence to determine is that beween σ2
p and the moments of the log micro

�uctuations (µ and σ̂).

To reconstruct aggregate volatility from quantiles volatility, we will need additional infor-

mation about their cross correlations (what is the same, we need to know if there are aggregate

shocks). Equations 2.11 and 2.22 to 2.29 guide the path arriving at aggregate variance once we

know sectoral volatilities.

For working out this problem, arrange agents into Q quantile parts (each denoted q), as

opposed to P random parts (denoted p) that we have been using so far. �e partition into

quantile parts implies sorting agents by size before spli�ing them into Q parts each concen-

trating nearly equal values S̄q = X̄/Q. As a consequence of sorting before spli�ing, agents in

each quantile part would have similar sizes. �is feature allows analysis to go further than if

working with random parts, as will come clear soon.

If we want to know the variance that the time series of a group of �rms can show, we need

to �rst be clear on how the group’s level is expressed in terms of its agents’ contributions.

�en we can compute the moments of the quantile parts’ time series.

�e di�culty is in that �rm sales are given as exponential levels. �at is, if we denote the
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sales of �rm i in linear levels by si and in log levels by xi, total sales of a quantile part q are:

Sqt =
∑
i∈q

si =
∑
i∈q

10xi (2.33)

�e sales of �rms si are observed at a speci�c time step t (i.e. si = sit), and the same is

true for the log levels xi.31

Firms are taken to belong at their zero �uctuation level x0
i , and they have �uctuated to

their xi level that is actually observed. In linear scale, this zero level is 10x
0
i ≡ s0

i . �e quantile

total when all its �rms are at zero �uctuations is S0
q =

∑
i 10x

0
i . �e quantile has a single zero

level for any time steps t.

To begin, consider Sqt/S0
q , the ratio between the observed quantile level and the zero quan-

tile level.

Sqt
S0
q

=

nq∑
i

10x
0
i+D(·)

nq∑
i

10x
0
i

(2.34)

Where D(.) is the distribution of log �uctuations de�ned as di�erence to mean values, as

in �gure 2.3. �e log level of �rm i observed at a time step can be denoted xi = x0
i +D(·) (and

here D(·) stands for a draw from such distribution).32 Eq. 2.34 can refer to a time series or to

a single observation. It is clear that it indicates the level sales of a quantile part q.

We are lucky to have had B. Mandelbrot discuss some features of sums of log-normal distri-

butions in Mandelbrot (1997). Do not be discouraged by the name of the chapter ”A case against

the lognormal distribution”. Instead, let us look at the content. �e �rst comment refers to the

fact 10x1 + 10x2 is an ugly sum to work with: ”A more-than-counterbalancing drawback: the

distributions of sums are unmanageably complicated. Dollars and �rm sizes do not multiply; they

add and subtract. But sums of lognormals are not lognormal and their analytic expressions are

unmanageable.”. And in the comment itself there is also the reason why we will still work with
31We omit the index t on the �rm level expressions to keep them less clu�ered.
32It is important to not confuse them with the distribution of growth rates, as in �gure 2.2. �e real distributions

D(.) do not have a closed form and are acknowledging the accumulation of subsequent growth rates, implicitly
acknowledging possible growth rates’ auto correlation. �e empirical D(.) may usually be described through a
mixture of normals. Remember if D(·) is eg. a normal, 10D(.) is a log-normal.
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sums of log distributions in this chapter: if we accept multiplicative growth as in Bo�azzi and

Secchi (2006), Gibrat (1931), and H. R. Stanley et al. (1996) then we have to add and subtract

the �rm sizes (in dollars). Mandelbrot is warning us that it is not the most natural path, but

the path we need is decided by the empirical system, and not chosen by us.

Note anyway that in this book Mandelbrot is referring to size distributions, and not to

distributions of micro �uctuations. And even if the general problem is complicated, in the

context of micro �uctuations distribution I show in this section that tracking the sums is not

such a di�cult problem. �e so called sums of powers have also been studied for engineering

applications which o�er us some technical guides. Marlow (1967) shows that under general

conditions (especially small coe�cient of variation std/mean of the gaussian exponent) the

sum of draws from a lognormal (thus also the mean) will be normally distributed.33 And this

opens the path for trying to estimate the moments of such a distribution.34 More recent works

dedicated to the situation of summing powers are Beaulieu and Xie (2004), Filho et al. (2005),

and Schwartz and Yeh (1982). �eir relevant range of parameters can di�er from ours.

So, the strategy is to �rst determine the expected value of the ratio in 2.34. �en it will be

easier to characterize its volatility. �e variance of this ratio is approximately proportional to

the variance of the log levels by a factor ln2(10) ≈ 5.30 (see Section 5.5).

2.8.1 Expected level of parts’ time series

To go further, note that from equation 2.34, if the total is split in enough (Q) parts all agents

in each q are of about the same size sq. �is is the narrow quantile condition. In that limit

equation 2.34 becomes:

Sqt
S0
q

=

nq∑
i

s0
q10D(·; nq)

nqs0
q

=
1

nq

nq∑
i

10D(·; nq) ≡ M̃t (2.35)

where D(·;nq) denotes a draw of nq elements from the distribution D(·). �e sum represents

a sum of all nq elements of this draw. Here we have introduced M̃t as an estimator of the mean

of 10D(.) computed from the nq values in 10D(.;nq).
33In fact the sum of draws from a lognormal can be log-normally distributed.
34�e distribution of means of draws from a log-normal is denoted as s∗N in the upcoming paragraphs.
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Now there is a key idea that we have to consider. �e value of the quantile, which in

the occasion t turned out to be M̃t can be assumed to have been drawn from an underlying

distribution that we can call s∗D.

Such a distribution is assumed to have a ’true’ mean valueM , for which M̃tis an estimator,

and a variance Σ2. Other than that, we do not know anything about s∗D, it does not need to be

normally distributed or have some closed form expression.

�e �rst moment of s∗D (M ≡ E[s∗]) is then a proxy for the levels Sqt/S0
q shown by quantile

q. If we want to know what M is, we need to look at the limit:

M = lim
n→∞

(
1

n

n∑
i

10D(·; n)

)
=

1

n

∫
n p(t)10tdt =

∫
p(t)10tdt ≡ E[10D(.)] (2.36)

where p(t) is the probability density function of the distribution D(.).35 �is suggests that

s∗q may be given as s∗q = 10D(·) for some D(·).36

Keep in mind that the expressions in eq. 2.36 are a large n limit. �e M̃t we observe should

converge to those levels progressively as nq increases. Mandelbrot (1997) comments ”�e pop-

ulation moments of a lognormal or approximate lognormal will eventually be approached, but

how rapidly? �e answer is: ’slowly’.”. �is convergence can be evaluated graphically in Figure

2.9, (equivalent to Figure E9-2, op. cit.). Before discussing the convergence pa�erns in Figure

2.9, let us introduce some formal tools.

We have said that there may not be closed form expressions for the �uctuationsD(·). Still,

these tent shapes (�gure 2.3) can naturally be expressed as mixtures of possibly assymetric log-

normal, log-Laplace, or even fa�er tail distributions. I will use the log-normal and log-Laplace

distributions as clear cut benchmarks for other more general log-distributions that may ap-

pear empirically and for which we do not have an expression. In all experiments empirical

distribution of micro shocks show results with features in between the log-Laplace and log-

normal functions, thus justifying this choice. �e conventions for de�ning the log-normal and

log-Laplace distributions are in Appendix. �ey are de�ned such that the theoretical standard

35What is the same: limn→∞

(
n∑
i

pi10D(·; n)
)

=
∫
p(t)10tdt.

36If �rm level �uctuations are small enough, the underlying distribution s∗D is approximately lognormal.
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deviation of log shocks matches the parameter σ̂.

In the derivations that follow, we may use the word micro to refer to agents’ characteris-

tics. �e most likely value of log micro �uctuations is denoted µ and the width of log micro

�uctuations are denoted σ̂. �ese can be loosely called the micro moments. As an example, a

log-Laplace distribution is 10L(µ,σ̂), with the de�nition of L(µ, σ̂) in Appendix (eq. 2.75).

Replacing D(.) = N(µ, σ̂) , or D(.) = L(µ, σ̂) , the moments (levels) MD = MN or

MD = ML around which the levels of quantiles M̃t = Sqt/S
0
q are situated are, for log-normal

micro shocks:

E[s∗N ] = MN = E[10N(.)] = 10µ+σ̂2 ln(10)/2 (2.37)

Equation 2.37 means that the level at which we observe the quantile part is S010µ, and

there is also an extra expansion of 10σ̂
2 ln(10)/2. �is expansion is quadratic on the standard

deviation of �rm �uctuations. Note that it will be present even when the population of agents

has µ = 0. �at is, even if mean log growth is zero, the part will be expanded in a factor of
1
2
σ̂2
q ln(10) from its zero level. 37 �is is one among a series of non intuitive features stemming

from non linearities that we will come accross. Having introduced a zero �uctuation level S0

di�erent from a stationary level S̄ = S010µ+σ2ln(10)/2 helps us be clear on these non linear

contributions to the total and not leave any of them behind.

For log-Laplace micro shocks, following eqs. 2.75 to 2.80 of Appendix:

E[s∗L] = ML = E[10L(.)] =
10µ

1− 1
2
σ̂2ln2(10)

(2.38)

a guided derivation of these moments is in appendix. �eir expressions (Eq. 2.37, 2.38) are

well known but following their derivations may be helpful for understanding exactly what

they mean and imply. Essentialy they are the mean of lognormal and log-Laplace distribu-

tion, but they also represent the level that comes out of averaging log-normal and log-Laplace
37For an intuitive approach to this e�ect think of the geometric e�ect by which multiplicative shocks (i.e. log

shocks) make the mean of equal �uctuations show an expansion. For example, the mean between 1 · (1 + ε) and
1/(1+ε) isM ′ > 1. Here ε is playing the role of σ̂. Apply the example with ε = 0.05. We have [1.05+1/1.05]/2 =
1.00119 > 1. Note that M ′ = 1.00119 > 1, and ln(M ′) = 0.00119 ≈ ε2/2 = 0.052/2 = 0.00125.

�is rule also means that twice as large �rm level shocks lets the total go four times as far from S010µ. In
our previous example, duplicating the deviation to 2ε = .1 lets the mean between 1.1 and 1/1.1 be 1.0045 > 1.
About four times as far from 1 than 1.0012.
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nominal �uctuations.

Note that eq. 2.38 is not valid if (the denominator is zero) σ̂ =
√

2 ln(10) ≈ 0.61. �e

average of log-Laplace shocks does not converge if σ̂ >
√

2/ln(10) ≈ 0.61, when the potential

expansion due to new agents overrides the averaging from law of large numbers (LLN) le�ing

it diverge as n increases. At this point the probability of large shocks balances the 1/n factor

in the large n limit of 2.36. Dynamics related to this will be present in almost every result we

observe in this section, and it o�ers a nice benchmark for discussing and thinking about the

problem of a population of �uctuating agents.

If we are interested in log(Sq/S0), we can use the equation 2.15 which relates the expecta-

tion of a random variable to the expectation of the log level of a random variable. If quantile

part �uctuations are not excessively large E[log(s∗D)] ≈ log(E[s∗D]) so that replacing 2.37 we

have

E[log(s∗N)] ≈ log(MN) = µ+ σ̂2 ln(10)/2 (2.39)

E[log(s∗L)] ≈ log(ML) = µ+ log

(
1

1− 1
2
σ̂2 ln2(10)

)
(2.40)

and if nq is su�ciently large log(Sq/S0) ≈ log(MD). In the limit of small σ̂ :

log(ML) ≈ µ+
1

2
σ̂2 ln(10) +

1

8
ln3(10)σ̂4 +O(σ̂6) (2.41)

so that in this limit both log-normal and log-Laplace �uctuations show a common dependence

of the type: log(Sqt/S0) = µ+ σ̂2 ln(10)/2.

Note that expressions for quantile mean level (Eqs. 2.37, 2.38) and log level (Eqs. 2.39, 2.40)

are in terms of the parameters of the log micro shocks distribution, µ, σ̂. �ey determine limits

at large n. To see how large nq needs to be for Sqt/S0
q ≈ MD, a graphical answer is in �gure

2.9. If we had to summarize the situation, we can say that the mean of empirical �uctuations

(average σ̂ = 0.49) does not diverge as it happens with the log-Laplace shocks with σ̂ > 0.61,

although it does shows a convergence slower than mean of log-normal �uctuations with the

same σ̂. �e bene�t of the exercise in 2.9 is that we can evaluate the convergence of the means

along the range of nq parameters that are relevant to the problem.
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�e plots in �gures 2.9, 2.10 and 2.11 summarize the dependence of E[log(Sqt/S
0
q )] on

the population size nq, mean log micro �uctuation µ and width of log micro �uctuations σ̂,

superposing computations with the equations 2.39 and 2.40 (in red). Plots on the le� and right

show the results when micro shocks are log-normal and log-Laplace respectively and those in

the middle show the result of using the empirically observed distribution of micro �uctuations.

For details and guides regarding the computational exercise refer to the Appendix.

Figure 2.9: As a function of population nq , expectation of the log of quantile levels for various widths of micro
shocks σ̂ and µ = 0. log-normal (le�) empirical (mid) and log-Laplace (right) micro shocks. With increasing
nq we see the convergence of mean to values of eqs. 2.39 and 2.40 (red), especially when micro log shocks are
gaussian. �e values of σ̂ are in the range 0.1 to 0.7. log-Laplace is seen to not converge with increasing nq if
σ̂ > 0.61. Empirical shocks show an intermediate scenario in between gaussian and Laplace log shocks.

Figure 2.10: As a function of µ, expectation of the log of quantile levels for various nq and σ̂ = 0.1. log-
normal (le�) empirical (mid) and log-Laplace (right) micro shocks. On red, equations 2.39 and 2.40 with a linear
dependence of slope 1. µ is varying in the range 0.0 to 0.1.

56



Figure 2.11: As a function of σ̂, expectation of the log of quantile levels for various nq and µ = 0. log-normal (le�)
empirical (mid) and log-Laplace (right) micro shocks. On red, equations 2.39 (log-normal shocks) with a quadratic
dependence, and 2.40 (log-Laplace shocks) with terms of order o(σ̂4) and higher in addition to the terms already
present for log-normal micro shocks. �e expectation in this last case diverges if σ̂ > 0.61, and adding more
agents we will not be able to average the quantile level. �e average magnitude of micro �uctuations is denoted
by the gray vertical band. σ̂ is varying in the range 0.1 to 0.7.

2.8.2 Variance of parts’ time series mean (the law of large numbers)

We have postulated that the levels M̃t = Sqt/S0 that a quantile q shows are drawn from a

hypothetical distribution s∗D. We do not know nothing of this distribution, although we could

have an expression for its ’true’ mean MD to which we approached by averaging the levels

shown by nq agents.

What is the variance of this mean M̃t? In the following step, take M̃t and 10Dit respectively

as time series of T realizations of the observed average M̃t, and observed �uctuations Dit of

the agent i at time step t.

var[M̃t] = var[
1

nq

nq∑
i

10Dit ] =
1

n2
q

var[

nq∑
i

10Dit ]

If the �uctuations belonging to each i are uncorrelated (i.e. if cov[10Dit , 10Djt ] = δijvar[10Dit ])

and if the variance that each of these agents i are showing are of about the same magnitude

var[10D(·)], then var[
nq∑
i

10Dit ] = nqvar[10D(·)], and the following applies:

var[M̃t] ≈
1

n2
q

nq∑
i

var[10Dit ] =
1

n2
q

nqvar[10D(·)] = n−1
q var[10D(·)] (2.42)

�is is a ’law of large numbers’ situation.38

38To compare with the developments in Dupor (1999), this paper examines the volatility of aggregates from a
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Computational tests show the variance of parts’ mean instead follow the more general

expression:

var[M̃t] = n−αq var[10D(·)] (2.43)

with α ≤ 1. Which may be taken as a ’postponement’ of such law of large numbers.

Figure 2.12: Variance of quantile levels as a function of nq , for various levels of micro �uctuations σ̂ and µ = 0.
log-normal (le�) empirical (mid) and log-Laplace (right). In the limit of small �uctuations the LLN applies (red).
As σ̂ grows, variance decay with population size is milder, although still dominant. �is is only broken by log-
Laplace shocks with σ̂ >

√
2/ln(10) ≈ 0.61, in which case the more agents one averages the more noisy the

averages get.

�is expression of the variance of mean of part q vs. part’s population nq as power law

with exponent α is in line with the models of volatility vs population size of eqs. 2.30 and

2.32 in section 2.7.1. In that section we saw that if parts’ follow such a power law, then the

aggregate inherits an average of their rate of decay. A power law for parts as in eq. 2.43

translates to analogous ’large number postponement’ power law for the idiosyncratic part of

aggregate variance.

model as in Long and Plosser (1983). �ese aggregates are capital (k) and also output, with equivalent results for
any of them. Autoregressive dynamics are managed by accounting variance in the frequency domain (see eqs
2.63, 2.64 and 2.65 in Appendix) and recurring to eigenvectors of functions of the input output matrix. Irrespective
of all this, the relevant result in the paper is a 1/n variance decay.

In this paper, the number of sectors is n. �e log level of a sector, is denoted k. �ere is an ”aggregate statistic”
k̄ = 1T k ∼ n k = n log(Sp). �is statistic is inconvenient to interpret, as it is the sum of log levels of sectors.
�ere is another aggregate statistic k̃ = k̄/n. Let us denote an average as 〈·〉. �en

k̄/n ≡ 〈k̄〉

and k̃ should be identi�ed with log(Sp). �e variance of k̃ is postulated to depend as varω[k̃] = Sk̃(ω) ∝
n−1f(ω). �is is equivalent to var[Sqt/S0

q ]/ln2(10) = var[M̃t]/ln
2(10) (see eq. 2.42). Although note that he is

referring to sectors and not the number of agents.
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Figure 2.13: Decay rate of quantile variance with populations size as a function of width of micro shocks σ̂. Le�:
var[Sqt/S

0
q ]. Right: var[log(Sqt/S

0
q )]. �e bo�om level implies fast law of large number convergence. Empirical

level of micro �uctuations are in vertical band. �ey suggest a rate−α ≈ −0.64 given the empirical distribution
of micro shocks.

�ere is a problem that has not been clari�ed so far, what is the mechanism that lets α

be smaller than 1? From results plo�ed in �gure 2.13 we are in a position to understand the

origin of this feature. In this �gure the value of the parameter −α is plo�ed as a function

of the width of micro �uctuations σ̂. Curves stand for log-normal, empirical and log-Laplace

micro �uctuations.

�e line in the bo�om is the −α = −1 level, which essentially is the naive diversi�cation

rule by which variance falls as 1/nq with the number of agents. As σ̂ increases from small

values σ̂ � 1 the rate of decay α starts to depart from the −α = −1 level. �ese departures

are stronger if micro shocks are fat tailed (eg. log-Laplace as opposed to log-normal) although

a log-normal does generate them. In the empirical scenario, �rm level shocks are large σ̂ ≈

0.5 and thus −α ≈ −0.6. Curves for various mean micro shocks µ are mostly overlapping

suggesting li�le to null dependence on this parameter.

�ere is still an open front however. Why would this departure appear as a milder power

law? A good answer to that will probably be developed in future studies, but there is a hint

that we can already pro�t from.

Remember the condition for arriving at the ’large numbers’−α = −1 expression of equa-

tion 2.42 was that there were no correlations among the time series 10Dit of agents i belonging

to part q. But should one allow non zero net cross covariances among the �rms belonging to

a part? If we do, eq. 2.43 should alternatively be:
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var[M̃t] = n−αq var[10D(·)] = cov(10D)︸ ︷︷ ︸
σ2
M

+
1

nq
var[10Dit ] (2.44)

For some σ2
M of which we know nothing, but which we can see occupies the place of

a comovement. In this equation I used cov(10D) to denote covariance terms among agents

which would come as a function f(µ, σ̂) of the micro moments of log deviations the same way

that var[10D] does.

�e idiosyncratic variances add a contribution var[10D(·)] for each agent. �e comovement

part adds a contribution σ̃2
M ≡ nqσ

2
M per agent.

var[M̃t] =
1

nq
(nqcov(10D)︸ ︷︷ ︸

σ̃2
M

+ var[10Dit ]︸ ︷︷ ︸
σ2
E

) (2.45)

Adopting this convention means comparing the magnitudes of the comovement and var[10D]

contributions on an equivalent, per agent basis. �is is convenient because it allows a neat

relation between the two contributions:

n1−α
q = 1 +

σ̃2
M

var[10Dit ]
⇔ (1− α) log(nq) = log

(
1 +

σ̃2
M

var[10Dit ]

)
(2.46)

�is relation is plo�ed in �gure 2.14. �is �gure lets us understand the balance between the

self-variance per agent (var[10Dit ]) and the covariance to all other agents per agent (nqcov(10D))

as a function of the part’s population nq.

�e slope of the lines is α, the parameter of decay of variance with population size. As we

have said, thisα is relevant especially when micro �uctuations are fat tailed and departs from 1

as a function of the width of micro �uctuations σ̂. In horizontal gray lines I show when σ̃2
M �

var[10Dit ] (lower line), when σ̃2
M ≈ var[10Dit ] (middle line) and when σ̃2

M � var[10Dit ]

(upper line). So that the plot is essentially telling us, if a comovement as in 2.45 explains the

departure from LLN, how large is the covariance of an agent to all others compared to the

variance of an agent itself.

In groups of few largest �rms, the convergence of the mean is limited by self variance
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Figure 2.14: �e balance between the terms that make and break the law of large numbers: variance var[10D] and
covariance per agent σ̃2

M = nqcov(10D). �eir relation is plo�ed as a function of population size nq . �e slopes
are the rate of variance decay with population α, given each of the micro shocks distribution, in this case at the
level of micro �uctuations σ̂ = 0.5 (close to their empirical magnitude). �is plot can tell us how important are
the comovements among �rms of a quantile given its population. For our problem, the quantile of largest �rms
has nq < 10 and σ̃2

M ≈ σ2
E in that case. In large groups of smaller �rms instead the fact that more agents add

more net contributions σ̃2
M = nqcov(10D) is more important than the averaging of var[10D] itself with higher

sample size.

as well as net contributions from comovement (smallest σ̃2
M ≡ nqcov(10D) ≈ var[10D]). In

the parts made of many small agents, most of the contribution to var[M̃t] is on the form of

comovement among agents. Still, the decay force of large number averaging 1/nq does result

in shrinking volatility of groups of many small agents and groups of few large agents are still

more volatile.

2.8.3 var[10Dit] as a function of micro moments µ, σ̂

To advance further we can use expressions for the moments of the distributions of log shocks

into var[10D(.)] = E[102D(.)]−E2[10D(.)] and by equation 2.43, express the variance of mean

shown by a quantile part in terms of the moments of the micro distribution of shocks, µ, σ̂.

Equation 2.43 becomes:

var[M̃t] = n−αq var[10D(·)] = n−αq 102µf(σ̂) ≈ n−αq 102µ
(
σ̂2 + o(σ̂4)

)
(2.47)

�e f(σ̂) are functions of the moments of the distribution of micro deviations. �is is

developed in appendix for the ideal cases of log-normal and log-Laplace micro shocks. For
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log-normally distributed �rm level shocks, D(·) = N(µ, σ̂), and (see eqs. 2.67, 2.68, 2.69):

var[10N(·)] = 102µ+σ̂2 ln(10)(10σ̂
2 ln(10) − 1) (2.48)

In the limit of very small micro �uctuations:

var[10N(·)] ≈ 102µ

(
σ̂2 +

3

2
σ̂4 + o(σ̂6)

)
(2.49)

For log-Laplace distributed �rm level shocks, D(·) = L(µ, σ̂). A calculation of the mo-

ments of the log-Laplace is in Appendix (Eqs. 2.76 to 2.83):

var[10L(·)] = 102µ

(
1

1− 2σ̂2
− 4

(4− σ̂2)2

)
(2.50)

In the limit of small micro �uctuations:

var[10L(·)] ≈ 102µ

(
σ̂2 +

13

4
σ̂4 + o(σ̂6)

)
(2.51)

So that var[10D(·)] shows the same dependence with moments of the microshocks both

for lognormal or log-Laplace distributions only for small �uctuations. �at is why in a sense

being expressable as 10D is a key feature for micro �uctuations, regardless of whether D is a

normal or a fat tails distribution.

�ese expressions for var[10Dit ] (eqs. 2.48 to 2.51) would let us express var[M̃t] in function

of the micro moments µ and σ. For the moment I have not worked the correct expression in

terms of micro moments for a term like cov(10D). Still notice by looking at eq. 2.44 that we

should expect it to be of the type: cov(10D) = 102µf(σ̂).

�e σ2 contribution (equations 2.49 and 2.51 ) is the one showing cancellation of oppo-

site shocks and convergence of the mean as when we average a time series showing additive

deviations from a level. Both log-normal and log-Laplace shocks contain this σ̂2 dependence,

although these multiplicative micro shocks have additional higher order terms o(σ̂4) that grow

up from zero as micro �uctuations are turned on. �ese are the nonlinearities that make mul-

tiplicative shocks di�erent from additive gaussian shocks. Note they are stronger if micro
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Figure 2.15: Variance of quantile levels as a function of width of micro �uctuations σ̂, for various population
sizes nq and µ = 0. log-normal (le�) empirical (mid) and log-Laplace (right). �e contribution from self variance
following the 1/nq rule (eqs. 2.48, 2.50, into 2.47 with −α = −1, red). In green, for the log-Laplace case,
acknowledgement of comovements as product of micromoments with population size nq (2.50, into 2.47 with
observed −α). Magnitude of empirical σ̂ is shown with vertical gray band.

shocks are fat tailed (log-Laplace).

Note however that non linearities adding to variance is one story, and the law of large

numbers (and its ’postponement’) is another story. �ey are di�erent features that get com-

bined. Note that in 2.44 we could replace each of equations 2.48, 2.49if we wanted to study the

case of log-normal (eqs. 2.50, 2.51 for log-Laplace) micro shocks. For brevity, let me use the

expressions in the case of small �uctuations which apply to any distribution of micro shocks

if σ̂ is small enough:

var[M̃t] = n−αq var[10D(·)] = 102µ

(
f(σ̂) +

1

nq

(
σ̂2 + o(σ̂4)

))
(2.52)

At the moment I did not develop the expression for f(σ̂), but it is likely that its �rst term

is of order o(σ̂4).39 If we kept only the o(σ̂2) terms, we are in the linear se�ing. In such case:

var[M̃t] = 102µσ̂2/nq. Note, that if it was not for the comovement term (eg. hypothetically set

f(σ̂) = 0), the nonlinearities by themselves would increase the variance that agents are having

although still the law of large number would be there: var[M̃t] = 102µ(σ̂2 + o(σ̂4))/nq. In
39For example, a covariance term can be of the type:
cov = 1

4102µ
(
(10x − 1)2 + 2(10x − 1)(10−x − 1) + (10−x − 1)2

)
With linear �uctuations 10x − 1 ≈ 1 + ε− 1 = ε and 10−x − 1 ≈ 1− ε− 1 = −ε and the covariance above

would be ε2 − 2ε2 + (−ε)2 = 0. Instead, in the nonlinear case this is:
cov = 4 sinh4 x ln(10)

2 ≈ 1
4 (x ln(10))4 + o(x6)

so that there is a leading quartic term. �ese are the terms that get turned on with large symmetric multiplica-
tive �uctuations.
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this sense, nonlinearities by themselves are not the explanation to milder convergence to the

mean with larger numbers. �e breaking of the large numbers rule is due to the comovements

across agents and it is turned on by non linearities (that in the additive gaussian case are null)

that wake up the comovement terms per agent which are nq times stronger than self agent

variance var[10D].

By coming down this path we were able to see the origin of the departure from LLN, and

describe the situation formally in terms of the parameters of populations of agents. With this,

there are already certain conceptions established in previous research that will need to be re

analyzed and there are new things to think about.

�e interpretation of ’postponement’ in LLN as �rm to �rm comovement, and the neat

relation that lets us balance it against the magnitude of self variance shown by agents are

some connections worth exploring further in new studies.

�is paper is now slowly coming to a closure, �rst by including some additional results

which may be useful (moments of log levels of quantiles) and in subsequent sections by testing

robustness to generalizations regarding size distributions, covering the accounting of exten-

sive margins and exploring the elements of cross covariance matrices.

2.8.4 Moments of log quantile levels

So far we have worked with M̃t ≡ Sqt/S
0
q , and there is a hypothetical distribution s∗D from

where Sqt/S0 values are drawn. If we were interested in the var[log(Sqt/S
0
q )] (which is also

the var[log(Sqt)] because S0
q is a �xed level) as opposed to var[Sqt/S0

q ] on the linear levels we

have looked at so far we can use the relation in equation 2.16, which tells us:

var[log(M̃t)] ≈
var[M̃t]

ln2(10)E2[M̃t]
(2.53)

�e variance of log levels is the one that we identify with σ2
q in previous sections (as in eqs.

2.21, 2.22, 2.23, 2.28, 2.29).

For the case of log-normal �uctuations, replacing the expressions for expected value and

variance of equations 2.48 and 2.37 into equation 2.53, and incorporating eq. 2.44, we have:
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var[log(M̃t)] ≈
var[Sqt/S

0
q ]

ln2(10)E2[Sqt/S0
q ]

= n−αq
102µ+σ̂2 ln(10)(10σ̂

2 ln(10) − 1)

ln2(10)102µ+σ̂2 ln(10)
= n−αq

10σ̂
2 ln(10) − 1

ln2(10)
(2.54)

In the limit of small �uctuations this is:

var[log(M̃t)] ≈ n−αq

(
σ̂2 +

1

2
σ̂4ln2(10) + o(σ̂6)

)
(2.55)

We can repeat analogous steps for an equivalent result applying to log-Laplace �uctuations.

It may be helpful to use var[x]/E2[x] = (E[x2]/E2[x])− 1, and apply the expressions for kth

moment of a log-Laplace (eqs. 2.81 in Appendix) already acknowledged in equations 2.38 and

2.50. Relations analogous to the ones in equations 2.54 and 2.55 are:

var[log(M̃t)] ≈
var[Sqt/S

0
q ]

ln2(10)E2[Sqt/S0
q ]

=
n−αq

ln2(10)

(
(1− 1

2
σ̂2 ln2(10))2

1− 2σ̂2 ln2(10)
− 1

)
(2.56)

In the limit of small �uctuations equation 2.56 becomes:

var[log(M̃t)] ≈ n−αq

(
σ̂2 +

9

4
σ̂4ln2(10) +

9

2
σ̂6ln4(10) + o(σ̂8)

)
(2.57)

Where again we see that the dependence for small �uctuations goes as σ̂2 as with log-normal

�uctuations, but the non linear terms are more than four times as large.

2.9 Acknowledging size distribution

Results in the preceding section were derived under the condition that all �rms in a part are

of the same size. �is narrow quantile condition implies abstracting away from the sizes of

agents. In that context we have seen that the mean value and variance of mean that a group of

agents presents can be approximated by functions of the moments of the distribution of micro

shocks, µ and σ̂. �e variance of mean has been seen to also follow a n−αq dependence with the

number of agents in the quantile part. But how are these results changing if we acknowledge
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�rms in a quantile part are not all of the same size?

A simple and decisive way to test the robustness of these results is to repeat the compu-

tations in a generalized se�ing. �erefore I repeat the experiments with �rm sizes given by

three ideal size distributions with parameters matching those observed in the population of

French traders. We have seen that outcomes involving empirical growth rates are always in

between the outcomes with log-Laplace shocks and log-normal shocks. For simplicity I apply

�uctuations given by these two models.

Firm levels in the zero �uctuations data are given by levels of the cummulative density

functions (CDF) of the following distributions:40

• x ∼ Lognormal(µ = 4.54, σ = 1.28, N ), for x > 3

where the x > 3 is a clipping that imitates the censoring of actual data. 41

Next size distribution we consider is the upper tail of the previous distribution, which

contains 90% of the value. �at is:

• x ∼ Lognormal(µ = 4.54, σ = 1.28, N ′), for x > x(q1/10) = 6.67

We also consider the Pareto distribution that �ts this upper tail.

• x ∼ Pareto(z0 = −1.10, sm = 6.37, N ′), for x > x(q1/10) = 6.67 ≡ xm

�e resulting dependence of mean of quantile levels, and variance of this mean is summa-

rized in the plots of �gure 2.16. Top plots show mean level of the quantiles as a function of

quantile population log(nq), bo�om plots are for variance of mean of the quantiles as a func-

tion of quantile population log(nq). Le� side plots show results applying log-normal shocks

and right side plots show results applying log-Laplace shocks. In all cases, mean micro �uctu-

ation parameter is set to µ = 0, and each of the many curves are for multiple possible values

of the width of micro �uctuations σ̂, in increasing levels from nearly zero up to their actual

magnitude σ̂ ≈ 0.5.
40�e parameters of these distributions match the empirical distribution of exports by �rm. �e experiment

is repeated on analogous synthetic zero �uctuation data matching parameters of imports at the �rm level, with
equivalent results.

41�e empirical size distribution of French trading �rms is bound from below at x = 3, i.e. s = 1000EUR.
Because most value is on the other end of the distribution, this is not critical for results. However, for examples of
how this type of censoring feature could be treated in general, see Yamamoto (2014) where moments of a clipped
log-normal are studied for an application on a practical problem. Computational results necessarily incorporate
this feature.
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Figure 2.16: Mean and standard deviation of group of agents appear clearly as functions of σ̂, nq . �e details of
size distribution do not ma�er signi�cantly. Top plots are for mean of log quantile levels for log-normal (top le�,
2.39) and log-Laplace (top right, 2.40) micro shocks of many widths. Bo�om plots for variance of quantile log
levels as function of population size for log-normal (bo�om le�, 2.54) and log-Laplace (bo�om right, 2.56) micro
shocks of many widths.

�e outcomes suggest that E[s∗D] and var[s∗D] are functions of the micro moments µ, and

σ̂, but most importantly, they are showing that these moments of the quantile time series are

functions of the population nq that apply regardless of what is the size distribution. Chang-

ing the size distribution changes the set of nq values describing quantile population, but the

functions derived in the previous section always apply in the same way.

�e �rst of the size distributions used in this experiment includes the large number of

smallest �rms that accumulate 10% of the value. �e results suggest that this sub population

of �rms qualitatively follows the same pa�ern as the remaining parts. �e matching however

is not complete, so that it may be advisable to follow this quantile (which in the end includes

the majority of agents) in a separate account. In practical applications this small �rms quantile

can be le� out because it weighs only a minority of total value, but this depends on the intended

application.

2.10 Acknowledging entry and exit events

So far we have worked in se�ings where there is no entry or exit of �rms. When considering

the largest �rms comprising 90% of the value this is reasonable because the ample majority
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of these �rms are present throughout the time series, especially if the time span of these time

series is not too long.

In general however, �rms are entities that can become active or inactive over time and it

is important to extend the formal framework to account for them.

Consider the following decomposition of sectoral sales time series Spt:

Spt = S̄p + ∆Spt = S0
p +Bpt +Mpt + Ept (2.58)

Here S̄p is the observed mean of the time series and ∆Spt are the observed deviations from

such level. �e term Bpt accounts for nominal �uctuations that exist still when all �rm level

�uctuations are zero. As such it can essentially be used to account for �uctuations due to entry

and exit events. 42. �e terms Mpt and Ept capture contributions related to comovements

and sectoral idiosyncracies respectively. Note that the relation in 2.58 implies Spt − S0
p =

Bpt+Mpt+Ept. So that contributionsB,M,E set the di�erence between S0
p and Spt. �e zero

level S0
p is that observed when removing all �uctuations, and note that in such case S0

p = S̄p

although that does not mean that S0
p = S̄p. �is is because S̄p includes the net mean of the

B,M,E terms in it.

Because Xt =
∑

p Sp we have σ2(Xt) ≡
∑
i,j∈P

Cov(Si, Sj) (equation 2.6). And analogous

to equation 2.8 the element i, j of this sum will be made of 3× 3 terms:

cov(Bit +Mit + Eit, Bjt +Mjt + Ejt) =cov(Bit, Bjt) + cov(Bit,Mjt) + cov(Bit, Ejt)

+cov(Mit, Bjt) + cov(Mit,Mjt) + cov(Mit, Ejt)

+cov(Eit, Bjt) + cov(Eit,Mjt) + cov(Eit, Ejt)

(2.59)

Without loss of generality log �uctuations of sales of some part p can be decomposed in

an equivalent way:
42An analogous term can of course be used to account for other �uctuations not related to �rms, for example

a nominal dri� which would appear as an exponential Bt component. I do not emphasize this possibility but the
mathematical framework is useful to account for it.
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Figure 2.17: Base components Bpt (green, le�), Mean �uctuation components Mpt (red, middle) estimated as the
median levels across 100 bootstrap samples, and actual total exports time series. Top plots are for the additive
BME decomposition (equation 2.58) and bo�om for the multiplicative decomposition (equation 2.60). In the
middle plots, results for micro shocks of half their empirical magnitude (σ̂) lets parts time series be a quarter as
far from the baseline level.

log(Spt) = log(S̄p) + Fpt = log(S0
p) + bpt +mpt + σpεpt (2.60)

where εpt as a random variable with mean zero and std = 1. �is equation implies: log(Spt/S
0
p) =

bpt + mpt + σpεpt. �e relation to nominal accounts presented before therefore is: Spt =

S0
p + Bpt + Mpt + Ept = S0

p10bpt+mpt+σpεpt . �e lowercases are not simply the uppercases in

log scale, although they do account for the same types of sources of volatility.

Consider a thought experiment where we ’turn on’ �uctuations to individual agents from

zero to their actual empirical magnitudes. At the start log(Spt/S
0
p) = bpt as shocks are turned

on we observe a di�erent log(S ′pt/S
0
p). �ese di�erences are the sum of all micro shocks and

log(S ′pt)− log(Spt) = δpt = mpt + σpεpt . mpt should be taken as a mean value around which

the �uctuations of part p are observed, so that cov(mpt, εpt) ≈ 0. �e width of this part’s

time series is σ =
√
σ2
δ + σ2

b . If �uctuations are shut o� then σ ≈ σb. If instead the micro

�uctuations are so large to dwarf bpt, then σ ≈ σδ . So that depending on the magnitude of

micro shocks, and the incidence of �rms entry, exit or merger, any of these sources may be

the explanation to observed aggregate volatility.

From the components we have proposed for log(Spt), if sectoral �uctuations are mild
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(a) (b)
Figure 2.18: Expected values of the cross covariance matrices as in equations 2.59 and 2.61. Aggregate variance
is the sum of all elements of the linear cross covariance matrix (eq. 2.5) and the log matrix ful�lls eqs. 2.22
and 2.23. Red-Yellow-Green colors denote negative, null, positive values. Le�: log cross covariance. Right:
linear cross covariance. Extensive margin (top le�) was accounted separately and shows a constant plus diagonal
(comovement plus idiosyncratic) structure. �e intensive part is separated into a comovement components (mid)
estimated by medians across bootstrap samples and idiosyncratic (bo�om right) variance. Correlation between
the idiosyncratic and B, M components components is near null (yelllow), as well as idiosyncratic covariance
among di�erent parts (o� diagonal cov(Ei, Ej) plots).

enough, the elements of cross covariance matrix that we need to sum in order to approxi-

mate aggregate variance are:

cov(log(Sit), log(Sjt)) =cov(bit +mit + σiεit, bjt +mjt + σiεjt)

=cov(bit, bjt) + cov(bit,mjt) + cov(bit, σjεjt)

+cov(mit, bjt) + cov(mit,mjt) + cov(mit, σjεjt)

+cov(σiεit, bjt) + cov(σiεit,mjt) + cov(σiεit, σjεjt)

(2.61)

In the remaining of this section I will show and discuss estimated dependence of such

componentsBpt,Mpt, and their counterparts bit,mit. Looking at the time dependence of these

components is more interesting because they include net comovements, as opposed to the Ept
and σpεpt terms which are centered on zero.

Details regarding the procedure for estimation of this decompositions are important, and

included in Appendix. Here I discuss the outcomes, see a brief description of technique for
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estimating elements of the covariance matrix in footnote. 43

In �gure 2.18 I illustrate the mean magnitude of elements of the cross covariance matrix

of linear (le�) and log (right) sectoral time series. Green elements are positive adn thus add a

contribution to aggregate variance. Yellow elements are near null.

�e top row and le� column of blocks are for the extensive margin. �e top le� cov(Bi, Bj)

block tells the extensive part of covariance among parts. We can see a comovement plus id-

iosyncratic structure. Eventually one might want to disentangle it, but in general it con�rms

the general comovement plus idiosyncratic pa�ern we have observer throughout this work

(see section 2.5.3. A partial correlation between the extensive margin and the intensive co-

movement is seen in the cov(Mi, Bj) and cov(Bi,Mj) blocks. �is is to be expected, as we

can see they both grow over time in our empirical benchmark (see Figure 2.17).

In our empirical case, the cov(Mi,Mj) block is the one contributing most to aggregate

variance. �e idiosyncratic block cov(Ei, Ej) is mostly diagonal as expected.

Matrix elements can be classi�ed into their 3 × 3 blocks, as well as their diagonal or o�

diagonal status. Diagonal elements are those of a part with itself, and o� diagonals are those

among di�erent parts. �is classi�cation is exploited in Figure 2.19 with the goal of sum-

marizing the dependence of matrix elements with the magnitude of micro shocks σ̂. Some

comments are in order. Starting by the upper le�, extensive margin block, note lack of de-

pendence with increasing micro shocks as expected, and note the relatively higher magnitude

of diagonal elements. �is feature, also visible in �gure 2.18 tells us there is room for sepa-

rating a comovement from idiosyncratic changes of parts’ extensive margin. When it comes

to covariances of the intensive comovement with itself (mid column) we see elements grow

with increasing microshocks. Diagonal and o� diagonal elements are equivalent. Idiosyncratic
43For estimation of BME decompositions I exploit a bootstrapping approach in which I repeat the following

steps multiple (eg. 100) times. For each run of the experiment, sample half of the �rms randomly, design a
partition into P = 10 random parts. First, force all �rm sales levels to not deviate from their mean. �ese are the
base time series, i.e. the �uctuations observed even when no �rm �uctuates, because of changes in the population
of �rms.

Next, add �rm level �uctuations by multiplying their actual magnitude slowly from zero to one. Measure the
di�erences from the base level and they are δpt = mpt+σpεpt. An estimation method needs to be introduced for
disentagling these two terms. I use the median across bootstrap repetitions as estimation of mpt and subtracting
it from actual observations to arrive at the estimation of σpεpt.

Once these decompositions have been done, one can look at all 9×P 2 elements of the cross covariance matrix
of equations 2.59 and 2.61.
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Figure 2.19: Cross covariance terms of equations 2.59 and 2.61. Expected value for increasing level of microshocks.
Vertical scale shared across plots. �e 3x3 boxes arrange combination of B, M, E components, the blue and yellow
sides of each box distinguish diagonal (i = j, part variance) from o� diagonal elements. Black dots denote mean
values and lines show 25% to 75% quantiles estimated from bootstrap. Note the magnitude is that of single
elements, which then need to be summed to arrive at the variance contribution of each block. �us, for example,
comovement elements (mid, mid) are smaller than idyosincratic ones (botom le�), but they are P times as many.
Discussion of the �gure in text.

contributions to aggregate variance (le� column) grow decidedly as microshocks are turned

on from zero. Note that o� diagonal terms, even if expected to be null (black point on the zero

level) appear distributed around this value with a width that increases with the magnitude of

micro shocks. �e same happens with the correlation between idiosyncratic sectoral compo-

nents and the comovement times series (le�, top and mid). �is means that in real examples,

the o� diagonal elements, are not null and can contribute positively or negatively to aggregate

variance. A method for estimating the importance of these contributions is in section 2.12.
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Figure 2.20: Idiosyncratic block of the log cross covariance matrix. Details of the mean values and standard
deviations across bootstrap samples denoted by the ± simbol below mean values. Le�: random partition into P
= 10 parts. Right: quantile partition into Q = 10 parts.

Finally, �gure 2.20 shows mean values of elements in the idiosyncratic block of the log cross

covariance matrix and their standard deviation. �e bene�t of having applied equal weight

partitions is that when we look at the matrix elements we can know they are contriuting

equally to aggregate variance.

On the le� side random partitions, and on the right side quantile partitions. �e sum of

these two matrices should be nearly similar, but they di�er in how their elements contribute

to this sum. �e results with random partition are nearly uniform across sectors, as is to be

expected, and most variance is on the diagonal elements. �ese diagonal terms are larger

on average thanks to large �rms’ volatility. Notice however that deviations of all values are

relatively large. Especially notice the amplitude of o� diagonal terms and how they average

to nearly zero across the M = 200 bootstrap repetitions.

�e decomposition into quantile parts on the right is quite interesting to analyse. �e struc-

ture is that of an outer product times a net covariance, as shown in the elementary examples

of Figure 5 (section 2.5.3). Elements in the bo�om and right side are associated to large groups

of smaller �rms. �e sample variance decay with population size (milder due to non linearities

and comovements but still present) results in a near null contribution of the large number of

smallest �rms accumulating up to 20% or 30% of value, as in the traditional picture where
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random shocks to thousands of agents cancel out. On the upper le� end, on the contrary, we

have the granularity situation where equal weight groups of fewer and fewer �rms contribute

their large magnitude sample variances. As in the outer product of of σ expression of section

2.5.3, multiplied by cov(εi, εj) terms, we can see that the elements associated to these parts are

able to contribute signi�cant positive and negative terms to aggregate variance by means of

their cross covariances (large o� diagonal values in the upper le�).

2.11 Conclusion

If we want to explain how the observed variance of an economic aggregate comes about, we

need to acknowledge a variety of mechanisms that combine, potentiate or counteract among

themselves. Let us make a summary of all the elements that come into play.

First, we need to know that variance is expected to be the sum of variance from aggregate

shocks (comovement) and variance from the parts of the economy (idiosyncratic variance).

Depending on their relative magnitude, aggregate variance can be identi�ed with any of these

two, or with a partial combination of both.

�ere are o� diagonal variance components related to net cross sectoral correlations or to

correlations between a sector’s �uctuations and its aggregate shocks. �ese terms are expected

to be null but in actual datasets they are never null, and they may need to be accounted for,

together with the aggregate comovement and the idiosyncratic volatilities.

When it comes to the idiosyncratic contribution to aggregate volatility, there are many

interesting mechanisms that combine to determine its magnitude.

Size distributions of economic agents, usually adapting to a log-normal distribution, or a

power law distribution (Pareto) for the subset of largest �rms imply a considerable concentra-

tion. �is means that some parts of the value will be accounted for by few very large agents

and others by a large number of small agents. �e �rst ones will show a large variance of their

observed sum (mean value), which dwarfs the volatility shown by a large number of small

�rms.

We need to know that the contributions of a group of agents to the idiosyncratic part of

aggregate volatility var[X] are weighted by the total value of those agents (and contributions
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to var[log(X)] are weighted by the group’s value share in the total). �is means that the large

sample variance observed in equal-weight parts that are li�le populated will drive the id-

iosyncratic aggregate volatility upwards. �is outcome can be interpreted as if the population

consisted of a smaller e�ective number of agents, and as such, as a breaking of the σ2
ε ∼ 1/N

rule.

�is situation is nevertheless not describing any rule of decay of idiosyncratic aggregate

volatility with number of agents, as such it should not be contrasted with a law of large num-

bers (LLN).

For understanding what happens with the LLN in empirical se�ings, we need to study

groups of �uctuating agents. In general, there are two contributions to the volatility that such

a group will present. �ese are a net comovement of each agent with all others in the group and

a self variance of each agent. If �uctuations to agents were additive, then only the last term is

non zero, and var[S/S0
q ] ∼ σ̂2

q/nq. In empirical se�ings, agent �uctuations are multiplicative,

i.e. non linear. �is means that agents’ self variances will increase to (σ̂2
q + o(σ̂4

q ))/nq. In

addition, the comovement among agents will also grow as o(σ̂4
q ). Fat tail agent �uctuations

exacerbate the onset of the comovement contributions to the group’s volatility, which easily

dominate when the group’s population exceeds, in our case nq � 10.

�e e�ects we just described can be seen as a decay of variance of a group of agents with

population that is milder than the 1/nq rule, and instead adapts to a σ2 ∼ n−αf(µ, σ̂). �e

volatility of a large group of small agents is thus not so small because of this e�ect. Still, it is

far smaller than the volatility shown by equal weight groups of large agents (because α� 0).

In fact, small agents contribute li�le to nothing to aggregate volatility in what can be taken as

a milder but clear averaging out of their �uctuations.

Finally, the idiosyncratic aggregate variance inherits the variance rate of decay α from the

parts that make up the total. Indeed we observe a decay idiosyncratic aggregate variance with

total population given by σ2
ε = CN−α, with α ≈ 0.50.

�e combination of all these elements results in the observed values of aggregate variance

in our benchmark empirical system. Part of their characterization and study has been absent

in recent studies, possibly due to the complications of accounting for largely non linear �uctu-

ations of economic agents. In any case, here I show that certain established conceptions need
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an open revision. Hopefully this papers’ coverage of a large variety of ingredients intervening

in volatility aggregation under empirical constrains can contribute to the understanding of

non intuitive features of populations of economic agents.
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2.12 Appendix I: Uncertainty introduced by o�-diagonal

elements.

Assume we estimated the σ2
i variance that each group of agents i present (equations 2.43, 2.48,

2.50, 2.54, 2.56). If apart from knowing sectoral variance we have information on aggregate

shocks, equations 2.28 or 2.29 lead us to agrgegate variance. To arrive at those equations we

assumed uncorrelated cross terms to go from equation 2.23 to eqs. 2.24 and 2.25. However, we

have seen that in actual se�ings these terms are never null (see right column of plots in Figure

2.19 and o� diagonal elements in matrices of plots in Figure 2.20).

�is is why we will estimate the typical magnitudes of positive or negative contributions

introduced by the terms of cross covariance, which are in expectation null, but actually never

null. �ese contributions can be taken as an uncertainty on the value of aggregate variance

expected. �is uncertainty will be given in terms of the magnitudes of parts’ �uctuations, σi.

We start from the idiosyncratic contributions to volatility, including cross covariances (Fig.

2.20):

σ2
parts =

1

Q2

∑
qi,qj

σiσjCov(εit, εjt)

Here assume the σi values have been determined. �e uncertainty ofE[σ2(log(X))] will come

from the terms cov(εit, εjt). We do not know the εit draws, but the upcoming steps can be devel-

oped assuming some distribution for the cov(εit, εjt) terms. For the sake of applying a simple

example, let o� diagonal values of cov(εit, εjt) be a random variable drawn from a uniform

distribution U(−1, 1). We will choose this description for the cov(εit, εjt) terms and illustrate

how one can estimate the uncertainty measure std[σ2(log(Xt))] in this case. A generalization

to the case of other possible distributions of cov(εit, εjt) can be derived analogously.

�en, what is the expectation and variance of σ2
parts? For this, let us separate the diagonal

terms and express the rest as double the upper- (or lower-) diagonal terms, becauseCov(εit, εjt)

is symmetric.

σ2
parts =

1

Q2

Q∑
q

σ2
q +

2

Q2

∑
i<j

σiσjCov(εit, εjt)
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σ2
parts

d
=

1

Q2

Q∑
q

σ2
q +

2

Q2

∑
i<j

σiσjU(−1, 1)

�e expected value of the o� diagonal terms is zero. �is feeds the idea that the cross covari-

ance terms could be dismissed in general. However these la�er terms will actually most surely

not be null. What can we do to estimate its importance? An option is to compute the variance

coming from Cov(εit, εjt)
d
= U(−1, 1) taking the σq terms as given. �is is:

var[Y ] = E[Y 2] − E[Y ]2 = E[Y 2] with Y = 2
Q2

∑
i<j

σiσjU(−1, 1) so that it reduces to

computing the expectation of:

E[Y 2] =
4

Q4
E

(∑
i<j

σiσjU(−1, 1)

)2


let us use the notation σiσj ≡ σ2
ij ≡ σp and Uij ≡ Up to denote the random draw of U(−1, 1)

that �lled the entry i, j (the pair p) of the modelled cross covariance matrix. �en we have a

sum of upper diagonal pairs to the square. Let us expand it.

E[Y 2] =
4

Q4
E

Q(Q−1)/2∑
p≡i,j

σpUp

2 =
4

Q4
E

Q(Q−1)/2∑
p

σ2
pU

2
p +

Q(Q−1)/2∑
p1, p2

2σp1σp2Up1Up2


=

4

Q4

1

3

Q(Q−1)/2∑
p

σ2
p

(2.62)

�e la�er term has null expected value because its distribution is given by the products

of independent draws of U(−1, 1). �e term U2
p is instead the distribution of the squares of

U(−1, 1) which has [0, 1] as support and has a mean value of
∫ 1

0
v2dv = 1/3. Finally:

var[Y ] = E[Y 2] =
4

3Q4

Q(Q−1)/2∑
i<j

σ2
i σ

2
j

Grouping common base terms (eg: extensive margin terms plus time �xed e�ects as dis-

cussed in section 2.10) into a single base mt and applying the same steps on the terms of cross

covariance to their time series:
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var

[
2

Q2

∑
qi

σiCov(mt, εit)

]
=

4

3Q4
σ2
m

Q∑
i

σ2
i

All this means that aggregate volatility has expected value and standard deviation:

E[var[log(Xt)]] = σ2
m +

1

Q2

Q∑
q

σ2
q

std[var[log(Xt)]] =
2

Q2

√√√√1

3

Q(Q−1)/2∑
i<j

σ2
i σ

2
j +

1

3
σ2
m

Q∑
i

σ2
i

�is is an uncertainty measure for aggregate variance estimations from using parts’ volatil-

ity and aggregate shocks magnitude as in equation 2.28, based on the magnitude of cross co-

variance terms.

2.13 Appendix II: Accounting variance by frequency

�e se�ing for our developments are time series of annual frequency. A question that may

arise is whether measuring the same variables at a higher frequency does change the observed

volatility substantially. �e answer is that most of the variation of aggregate sales over time

is explained by low frequency components, that is, cycles longer than a year well captured in

annual data. �is suggests measuring volatility on annual time series is a reasonable choice,

although we will be missing certain additional volatility linked to seasonal changes.

To explore this issues we o�er the expression for our problem in terms of Fourier series,

which allows comparability with approaches as in Dupor (1999) and Horvath (1998).

�e time series x we consider have monthly frequency over T = 17 years, so that their

length is L = 204 = 12T . �ey can be expressed as:

x =
L−1∑
k=0

y(k) exp

(
i2π

k xL
L

)
(2.63)

with k ∈ [0, 203] the wave number (minimum to maximum wave frequency), xL = (1, ..., L)

a vector of time steps, y(k) the k-th element of Fourier transform of x divided by L, that is:

79



y(k) =
1

L

L−1∑
t=0

exp

(
−i2πk t

L

)
x[t] (2.64)

Alternative conventions to express these are as well valid. From here we can associate a

magnitude of volatility to each frequency k by their amplitude in equation 2.63, i.e. by the

magnitude of y(k), excluding the zero frequency component. �is is:

var(x) =
L−1∑
k=1

|y(k)|2 (2.65)

Figure 2.21: Annual or lower frequency (blue), full frequency (gray) and annual average levels for monthly ag-
gregate French exports (le�) and imports (right).

We have information on monthly disaggregation of exports and imports to assess whether

most variation is explained by low or high frequency components. �ese are illustrated in

the plots of �gure 2.21. Annual and lower frequencies are called low, and higher than annual

frequencies are called high. �e only signi�cant high frequency components are related to

seasonal pa�erns (six month, quarters, two months, etc). For imports, annual or lower fre-

quencies add up to 90% of variance, while for exports this �gure is 75%.

�is result encourages the study of variance in annual time series as a fair account of vari-

ance even in higher frequency measurements. Eventually we might want to add a contribution

to aggregate volatility from seasonality. �is is not problematic and we leave it out of the rest

of the analysis.

2.14 Appendix III: log-normal and log-Laplace

�e convention adopted for the formulas for the growth distributions are as follow:
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Normal

N(µ, σ̂, x) =
1√

2πσ̂2
exp

(
−(x− µ)2

2σ̂2

)
Lognormal: 10N(µ,σ̂,x) = eN(m,

√
V ,ln 10(x)), with m = µ ln(10) and V = σ2 ln2(10).

Also, D(µ, σ̂;n) denotes a draw of n elements from the distribution D(µ, σ̂).

2.14.1 Moments of a log-normal

�e expected value (�rst moment) is E[10N(µ,σ̂,x)] = em+V/2 = 10µ+σ2 ln(10)/2. In general, the

k-th moment is E[10kN(µ,σ̂,x)] = exp
(
k2

2
σ2 ln2(10) + kµ ln(10)

)
= 10

(
k2

2
σ2 ln(10)+kµ

)
We can also calculate it from 2.36. If the microshocks pdf is Gaussian, i.e. p(t) = exp(−(t−

µ)2/(2σ2))/
√

2πσ, the expectation of 10kt is:

E[10kt] =

∫
p(t)10ktdt

=
1√
2πσ

∫
exp

(
−(t− µ)2

2σ2
+ ln(10)kt

)
dt

=
1√
2πσ

∫
exp

(
−((t− µ)− σ2 ln(10))2

2σ2
+ k2σ2 ln2(10)

2
+ kµ ln(10)

)
dt

(2.66)

where we completed squares in the exponential. Now we can integrate away the terms

that represent a unit normalized Gaussian pdf, to be le� with the terms:

E[10kt] = exp

(
kµ ln(10) +

k2

2
σ2 ln2(10)

)
(2.67)

From here, if t is given by a Normal distribution, then:

E[10t] = 10µ+ 1
2
σ̂2ln(10) ≈ 10µ

(
1 +

1

2
σ̂2 ln2(10)

)
(2.68)

where the expression on the le� side are series approximations in the limit of small �uc-

tuations σ̂.

E[102t] = 102µ+2σ̂2ln(10) (2.69)
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�en variance, which is var[10N(·)] = E[102N(·)]− E2[10N(·)] is:

E[102t] = 102µ+σ̂2ln(10)(10σ̂
2ln(10) − 1) ≈ 102µ((σ̂ ln(10))2 + o(σ̂4)) (2.70)

where the le� side is a series approximation in the limit of small �uctuations σ̂.

2.14.2 Moment of a log-normal in the context of size distribution

Apart from being relevant to knowing the average of small multiplicative micro shocks, the

�rst moment of the lognormal can be used to derive the distribution of value from the dis-

tribution of population. Mandelbrot (1997) also looks this calculation in the paragraph titled

”�e lognormal’s density and its population moments”.

For this, apply a lognormal PDF as pcnt(s) in equation 2.3 and we will arrive at a PDF for

pval(s). Recall (eq. 2.3):

Xpval(s) = Npcnt(s) s (2.71)

Propose:

pcnt(s) =
1

s
· 1

σ
√

2π
exp

(
−(ln s− µc)2

2σ2

)
. (2.72)

Apply the change of variable x ≡ log(s). �us when we apply eq. 2.72 in eq. 2.3, the

lognormal multiplied by the value variable is:

pval(s)ds =
1

σ
√

2π
exp

(
−(ln s− µc)2

2σ2

)
ds

Because ds/s = ln(10)dx and already replacing s = 10x = eln(10)x

pval(x)ds =
ln(10)

σ
√

2π
exp

(
−(x− µc)2

2σ2

)
exp(ln(10)x)dx (2.73)

the multiplication of counts per the corresponding value becomes the sum in the exponent,

that is, it can be expressed as:
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Figure 2.22: Size distribution in log log scale ��ed by log-normal model (parabola). Data from all �rm-years
available are binned and ��ed by OLS. Value distribution (yellow, right) is derived analytically from parameters
of agents’ size distribution (see expressions annotated and equation 2.74).

pval(x)ds =
ln(10)

σ
√

2π
exp

(
−(x− (µc + σ2 ln(10)))2

2σ2
+
σ − 2µc

2σ2

)
dx

that is:

pval(x)ds = exp
σ − 2µc

2σ

ln(10)

σ
√

2π
exp

(
−(x− µv)2

2σ2

)
dx

or, a�er normalization:

pval(x)ds =
1

σ
√

2π
exp

(
−(x− µv)2

2σ2

)
dx (2.74)

which could be taken back to the linear horizontal scale if wanted. �is means that the

distribution of value is a lognormal with µv = µc + σ2 ln(10) and the same σ. �ese are the

yellow curves to the right of the plots in �gure 2.1.

We can also think of the parameters of the distribution as coe�cients of a parabola (cf

plots in �gure 2.22, 2.1). �e multiplication and normalization in the equations preceding 2.74

are the equivalent of adding a line to the parabola, and subtracting a constant to normalize.

�e result is a new parabola with the same quadratic coe�cient but displaced σ2 ln(10) to the

right.
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2.14.3 Moments of a log-Laplace

�e Laplace is used as:

L(µ, b, x) =
1

2b
exp

(
−|x− µ|

b

)
=

1√
2σ̂
exp

(
−|x− µ|
σ̂/
√

2

)
(2.75)

�e parameters σ̂ =
√

2b are proportional to each other and they are measures of the

width of the distribution. Using b is a used convention but σ̂ has the bene�t of being the

actual standard deviation observed.

�e log-Laplace in base 10 is: 10L(µ,σ̂,x). A good reference is in Kozubowski and Podgorski

(2003).

I show how one can derive the �rst moment in the simpli�ed case of symmetric shocks

distribution and mean zero. For that, we want to compute the expected value E[10t] when t

is distributed as a Laplace.

To do this, �rst separate the negative and positive expression for the Laplace shocks pdf:

E[10t] =

0∫
−∞

p(t)10tdt+

∞∫
0

p(t)10tdt (2.76)

Knowing the expression of the inde�nite integral of 10tp(t) we only need to evaluate it at

the integration limits (Barrow).

Use that
∫

10t exp(±t/b)/(2b)dt = 10t exp(±t/b)/(2(b ln(10)± 1))

E[10t] =
1

2(b ln(10) + 1)

[
exp(t/b)10t

]0
−∞ +

1

2(b ln(10)− 1)

[
exp(−t/b)10t

]∞
0

for evaluating this more easily, using again that 10t = eln(10)t

E[10t] =
1

2(b ln(10) + 1)
[exp([1/b+ ln(10)]t)]0−∞+

1

2(b ln(10)− 1)
[exp([−1/b+ ln(10)]t)]∞0

From here, the mean will diverge unless the exponentials are zero at the in�nity, i.e. the

exponent on the right needs to be negative, from where we need σ̂ <
√

2/ ln(10) ≈ 0.61.

�e theoretical mean values do diverge upwards when approaching this σ̂ level. Means from
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experiments when σ̂ is above this level do show an ’explosion’ upwards, although they are

�nite because there is a bounded number of agents (N ).

Evaluating the primitive at the limits:

E[10t] =
1

2(b ln(10) + 1)
− 1

2(b ln(10)− 1)
=

1

1− (b ln(10))2
(2.77)

If the Laplace shocks were centered in µ 6= 0, then the mean is just multiplied by 10µ so

that:

E[10t] =
10µ

1− (b ln(10))2
=

10µ

1− 1
2
σ2 ln2(10))

(2.78)

An expression for the moments of a log-Laplace, generalizing to possible asymmetries is

in Kozubowski and Podgorski (2003) as:

E[10kt] =

∫
pL(t)10ktdt = 10kµ

αβ

(α− k ln(10))(β + k ln(10))
(2.79)

where the α and β parameters stand for possibly asymmetric slopes on both sides of the

mean. Here I incorporated the base 10 as we have done in the log-normal case, and departing

from the natural base in Kozubowski and Podgorski (2003). �e symmetric case implies using:

α = β = 1/b, which leads to:

E[10kt] = 10kµ
1

1− (kb ln(10))2
(2.80)

�e parameter b relates to the standard deviation of a Laplace distribution (σ̂) as: b = σ̂/
√

2.

�en the second moment is

E[102t] = 102µ 1

1− (σ̂ ln(10))2/
√

2
(2.81)

From here the variance var[10L(·)] = E[102L(·)]− E2[10L(·)] would be:

var[10L(·)] = 102µ

(
1

1− 4b2
− 1

(1− b2)2

)
and in terms of the micro moment σ̂ =

√
2b, this is:
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var[10L(·)] = 102µ

(
1

1− 2σ̂
− 4

(4− σ̂2)2

)
(2.82)

In the limit of small micro �uctuations:

var[10L(·)] ≈ 102µ

(
σ̂2 +

13

4
σ̂4 +

15

2
σ̂6 + o(σ̂8)

)
(2.83)

2.15 Appendix IV: Computational Experiments

�e codes for reproducing all results in this paper will be available in a GitHub repository.

�e language used is python and �les are jupyter notebooks. Next, I describe each of the

experiments performed and I include a pseudo code.

2.15.1 Exp. 1. Dependence with N

�is experiment has the goal of measuring the dependence of aggregate idiosyncratic variance

(σ2
ε ) with population size (N ).

It follows a sequence of steps:

• Prepare dataset

• Sample N agents with replacement

– Compute aggregate statistics.

– Apply random partition and compute parts’ time series.

– Apply quantile partition and compute parts’ time series.

• Separate medians from idiosyncracies.

• Compute covariance matrices

For this exercise, we wish to have a dataset that is largely equivalent to the raw data, but

for the condition that there is no entry and exit. To achieve this, the steps are to �rst, keep

only �rms that are active in at least 6 of the total 17 years available. �en, �ll inactive years
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with mean value of the respective �rms. Finally, keep only �rms that are trading more than

1mEUR on average. �ese changes leave us with a resulting dataset with a size distribution

that is largely equivalent to the upper tail (Pareto part) of the original data. Indeed, �rms

trading more than 1mEUR on average are present in most of the time steps so that the n/a

�lling is not really substantial. In addition, the largest �rms concentrate most of the value, so

that keeping only those above 1mEUR lets us still account for nearly the totality of french

�rms’ international trade.

# Number of parts:

Q = 10

# Load data, sales by firm, year.

df = pd.read_csv(’./ID_Y.csv’)

sales = df.groupby([’IMPORT, ’ID’, ’YEAR’])[’VART’].sum().unstack()

for i in [0, 1]:

# Choose firms with presence in most sample, to avoid high distortion

filling exit gaps

sales_filt = sales.loc[sales.count(1) > 6]

filt_fm = sales_filt.copy()

# Large firms pareto filled mean.

for col in filt_fm:

filt_fm[col] = filt_fm[col].fillna(sales_filt.mean(axis=1))

# Hard cut for Pareto tail

filt_fm = filt_fm.loc[filt_fm.mean(1) > 1e6]

## Sanity checks. What is the total after we filled non active gaps and

kept large firms

X = sales.sum().mean()

X_actives = sales_filt.sum().mean()

X_act_lrg = filt_fm.sum().mean()
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print(X_actives/X)

print(X_act_lrg/X_actives)

print(X_act_lrg/X)

# Save dataset

filt_fm.to_csv(’./firms_data.csv’)

�e processed dataset is always within 10 percent of the total observed in the raw data.

For the experiment, we will sample N agents with replacement and compute aggregate

statistics, as well as apply partitions and compute the cross covariance matrices these present.

# Population numbers

logn_vals = [2.5 , 2.65, ... , 3.7, 3.85] # log scale

n_vals = [ 300., 400., ..., 5000., 7100.] # linear scale

# Repetitions

M = 150

data = pd.read_csv(’./firms_data.csv’)

for i in [0, 1]: # Exports / Imports

for N in n_vals:

for m in range(M):

# Sample with replacement from agents’ time series

n_sample = data.sample(int(N), replace = True)

## Calculate aggregate magnitudes: Total, firm sizes,

Herfindahl.

X_t = n_sample.sum()

Si = n_sample.mean(1)

herf2 = ((Si/Si.sum())**2).sum()

agg_res += [[m, X_t.mean(), X_t.std(), np.log10(X_t).std(),

herf2]]
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# Partition (random parts)

n_sample_p = n_sample.copy()

n_sample_p[’p’] = pd.cut(n_sample_p.sum(1).cumsum(), Q, labels

= range(Q))

# Aggregate to parts’ time series, and count parts’ population.

n_m_p_out = n_sample_p.groupby(’p’).sum().reset_index()

n_m_p_out[’n’] = n_sample_p.groupby(’p’).size().values

# Partition (quantile parts)

n_sample_q = n_sample.copy()

n_sample_q = n_sample_q.loc[n_sample_q.sum(1).sort_values().

index] ## SORTING

n_sample_q[’p’] = pd.cut(n_sample_q.sum(1).cumsum(), Q, labels

= range(Q))

# Aggregate to parts’ time series, and count parts’ population.

n_m_q_out = n_sample_q.groupby(’p’).sum().reset_index()

n_m_q_out[’n’] = n_sample_q.groupby(’p’).size().values

<Store results>

<Concatenate results and save>

result_aggs

result_Sp

result_Sq

Now, we compute medians across theM repetitions and use it as proxy of the comovement

time series of parts’.

# Store medians accross M repetitions

medians_p = result_Sp.groupby([’IMPORT’, ’N’, ’p’]).transform(’median’);
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# Idiosyncracies are the actual values minus the medians

res_nmp = result_Sp.set_index([’IMPORT’,’N’, ’p’]) - medians_p;

# Store info

info_p = pd.concat([medians_p, res_nmp])

<Repeat for result_Sq in place of result_Sp>

Next, compute the values of the cross covariance matrix, in each se�ing and for each of

the M repetitions.

cov_out_list = [] # List for outcoming cov values

for i in [0, 1]: # Exports / Imports

for N in n_vals: # For all the sampling sizes (population N)

for m in range(M): # For each of the repetitions

for k, sorting in enumerate([False, True]): # For both random

and sorted parts

info = [info_p, info_q][k]

df_ = info.loc[(info.IMPORT == i) & (info.m == m) & (info[’

N’] == N)]

df_ = df_.set_index([’comp’, ’p’])[[str(y) for y in range

(1997, 2013)]]

cov_m = df_.T.cov()

cov_vals = cov_m.stack([0, 1])

cov_vals.index.names = [’comp1’, ’p1’, ’comp2’, ’p2’];

cov_vals.name = ’cov_ij’

# Store

cov_out_list += [cov_vals]

# Concatenate

cov_results = pd.concat(cov_out_list)

Now, we have M (eg. M = 150) realizations of each of the elements of the cross covariance

90



matrix, separated into median (comovement) and residual (idiosyncratic) parts, for di�erent

population sizes N and both for imports and exports.

�is information has multiple uses, for example making the plots in �gure 2.8.

2.15.2 Exp. 2. Power sums

�e aim of this experiment is to accompany the derivations in section 2.8. �e essence of the

program is quite simple. First generate a vectors of length nq with realized values Di drawn

from a theoretical distribution D(·). �en, compute the sum of values in the vector 10D(·) and

divide it by the sum of the zero levels (100 = 1) which is equal to nq. �e outcome is a time

series of length T and we store its moments, as well as the moments of its log levels.

import pandas as pd

import numpy as np

# (names of) Log shocks distributions

dists = [’norm’, ’lapl’, ’empirical’]

# Values of micro standard deviation

ss = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

# Values of micro mean fluctuations

mus = [0, 0.01, 0.02, 0.05, 0.1]

# Repetitions

M = 200

# Time steps

T = 17

## List of results

results = []

s0 = empirical_shocks.std()
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for distribution in dists:

# Second quantile and next contain most of the value with few agents

for q in range(Q)[1:]:

n = population[’n_q’][q] # number of agents in quantile.

for s in ss: # micro sigma

for mu in mus: # micro mu

for m in range(M): # Repeat M times

if distribution == ’norm’:

shocks = np.random.normal(mu, s, (n, T))

elif distribution == ’lapl’:

shocks = np.random.laplace(mu, s/np.sqrt(2), (n, T)

)

elif distribution == ’empirical’:

shocks = (mu + np.random.choice(emp_shocks, n * T)

*(s/s0)).reshape(n, T)

ratio = np.power(10, shocks).sum(0)/n

log_ratio = np.log10(ratio)

results += [[distribution, s, mu, n, m, ratio.mean(),

ratio.std(), ratio.var(), log_ratio.mean(),

log_ratio.std(), log_ratio.var()]]

# Create dataframe with the computed information

result = pd.DataFrame(results, columns = [’distribution’, ’s’, ’mu’, ’nq’,

’repeat’, ’mean_ratio’, ’std_ratio’, ’var_ratio’, ’mean_log_ratio’, ’

std_log_ratio’, ’var_log_ratio’])

# Save pandas DataFrame

result.to_csv(’./filename.csv’, index = False)
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Chapter 3

Areal disaggregation: correlation leads

to spatial patterns
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Abstract

Measures of cooccurrence computed from cross sectional data are used to rationalize connections

among economic activities. In this work we show the grounds for unifying a multiplicity of sim-

ilarity techniques applied in the literature and we precise the identi�cation of cooccurrence to

actual coexistence in space, when one side of the cross section are small administrative areas. All

the similarity techniques studied here are akin to a correlation structure computed from spatial in-

tensity, also known as locational correlation. We argue that these correlations o�er objective tools

to detect spatial pa�erns. Indeed we show that when applied to data of employment by industry

and county in United States (from 2002-7) the communities of networks derived from locational

correlations detect spatial pa�erns long acknowledged in economic geography. By addressing crit-

ical open issues on the interpretation of cooccurrence indices, this work o�ers technical guides for

their exploitation in Economic Geography studies.

3.1 Introduction

�e study of a wide range of questions in Economic Geography is based on characterizing the

spatial distribution of activities, their employment, facilities, suppliers or customers. �ese

questions can be related to agglomeration externalities, di�usion of knowledge or regional

development, to name some examples.

Researchers usually seek to condense the full spatial information related to some economic

activity into indices that can express special features of interest. �ere are measures that aim

to capture spatial concentration, for instance those in Duranton and Overman (2005) and M.

Porter (2003) (under the name ’locational correlations’). �e �rst ones compute all pairwise

distances among establishments of an industry and compare their distribution with expec-

tations from a null model to determine if certain industries have their establishments more

frequently located at certain distances. �e la�er proposes to compute the correlation matrix

from cross sectional data of employment by US state suggesting that high correlation across

space signals ’locational linkages’ between a pair of activities.
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In other cases we have so called cooccurence measures, as in Hidalgo et al. (2007). �ey

apply a proximity measure on cross sectional data of exports by country to estimate a network

of products (product space). �is method has inspired a very active strand of literature that

studies inferred networks of economic activities, technologies or regions (Boschma et al., 2014;

Delgado et al., 2015; F. Ne�e et al., 2011) and has put forward the idea of relatedness as a central

concept (Hidalgo et al., 2018).

�e product space of Hidalgo et al. (2007) appears to be a technique unrelated to the ones

mentioned before. In fact, however, the proximity derived in Hidalgo et al. (2007) can be taken

as a correlation structure like that in M. Porter (2003).

In this paper we suggest that technical e�orts devoted to understanding correlation struc-

tures would solidify the foundations of recent research papers in various strands within Eco-

nomic Geography. We focus on correlation structures computed on cross sections where one

of the sides are geographical units. In that particular case pairwise similarities must have

spatial interpretations.

In our view, two issues are among the most critical. Firstly, there seems to be no uni-

�ed criteria in the transformation of raw data, and the computation of similarity measures.

Di�erent works adopt slight variations of the same processing steps rendering their results

incomparable. In addition, some of the most popular methodological decisions are approx-

imately equivalent to comfortable mathematical tools but depart slightly from them. �is

complicates the formal study of the indices used, even if possibly not changing the published

results signi�cantly.

A second clear open issue that applies to this type of studies has to do with the formal

treatment of space. Physical distance plays key roles in almost any phenomena studied in

Economic Geography. But (back to the connection between Duranton and Overman (2005)

and M. Porter (2003)) when computing locational correlations, how do distances enter the

picture? We aim to tackle and overcome this problem and reconcile correlations computed

from data of administrative areas to accounts in continuous space.

To address the �rst issue, exploiting data on number of employees and number of estab-

lishments by industry (4 digit North American Classi�cation System, NAICS) and county in

the United States (US). We �rst compare similarities presented by all pairs of industries, test-
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ing alternative combinations of raw data processing (no transformation, log transformation,

binarized location quotient (LQ)) and similarity measures (cosine similarity, Pearson correla-

tion, proximity as in Hidalgo et al. (2007), covariance, and dot product of the cross sectional

matrix). �ese are the discrete similarity measures, so called because they are computed from

areal data. We �nd that all these transformations and similarity measures lead to partially

equivalent rankings of similar - dissimilar industry pairs. 1

To address the second issue, we compare expressions of overlap in continuous space to

these discrete measures. Analytical developments suggest a close relation between cosine

similarity measures and coexistence in continuous space. Computational experiments con�rm

this connection inequivocally and help understanding the implications of certain character-

istics of geographical areas. In a nutshell, computing cosine similarity of employment levels

in counties is equivalent to superposition in continuous space of exponential decay density

around establishments. As long as the decay width is about one third of the typical area size

(diameter).

A�er addressing these open issues with similarity measures, we explore the co-occurrence

inferred from data of employment by industry and US county. Because one side of the cross

section are small areas, communities detected from correlation structures are associated to a

spatial pa�ern (neighboring activities in the network have a similar distribution across coun-

ties). Indeed, correlation structures allow us to classify industries by their spatial distribution,

and the classes that we �nd point clearly to long theorized economic phenomena. More pre-

cisely, we distinguish large cities, distribution of population, presence of natural resources

(forests, coastal regions, agriculture or minerals/fuels) and activities that predominate in each

of them. A last group comprises most manufacturing activities. One can say this technique

is a dimensionality reduction, as instead of more than 3000 counties we can describe spatial

distribution of industries by means of few pa�erns. It is interesting to note that this classi�ca-

tion, while clearly pointing to concepts studied in Economic Geography, is achieved without

any informed intervention from the researcher. �e information is encoded in the raw data

and thus in the correlation matrices.
1In the literature the names proximity, co-occurrence or coexistence measures, correlation structures or loca-

tional correlations (M. Porter, 2003) refer to similarity measures of this family. Sometimes referring to measures
sharing a de�nition (formula) or di�ering in their de�nitions.
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Overall, results of this work help to make the case for the use of correlation structures as

an objective tool in the study of spatial pa�erns.

�e paper is organized as follows. Section 3.2 reviews works applying cooccurrence mea-

sures. Section 3.3 describes the data. Section 3.4 presents a overview of the methods used,

clarifying notation and terminology. Section 3.5 shows the grounds for unifying a variety of

discrete coexistence measures. Section 3.6 shows how discrete similarity measures match a

continuous model of space. Section 3.7 discusses the correlation structures observed in US

and we conclude in Section 3.8.

3.2 Related works

3.2.1 �e use of similarity measures

Inner products such as XTX are basic measures of joint cooccurrence and as such they have

been featured o�en. �e elements of this matrix are (XTX)ii′ =
∑
xij.xi′j . Antecedents of

studies that applied this framework may be found outside Economic Geography. Applications

to counts of patents appear at least as early as in Ja�e (1986) where a cosine similarity between

vectors of �rms patents by technological categories is called proximity and used to weight

investments in related �rms. Basic joint cooccurrence and cosine similarity is also applied

on patent data in Breschi et al. (2003) and Engelsman and van Raan (1994). In fact, these and

other types of similarity measures (co-authorship, joint thematic classi�cation of published

works) have been naturally welcomed in scientometric research (cf van Eck and Waltman

(2009) for a review). Much earlier appearance of such similarity methods is likely, although

the lack of good quality data and computational availability may have discouraged this type

of analysis. Counts of joint occurrences of products in the portfolio are used by Teece et

al. (1994) to evaluate the coherence of �rms portfolios. Some more recent examples which

prompted a revitalization of the approach are in Hausmann and Klinger (2007) and Hidalgo

et al. (2007), where they call a minimum conditional probability as ’proximity’ (φ). �at is

φii′ =
∑
xij.xi′j/max(Σ xij,Σ xi′j), applied on a transformed matrix of exports by country.

�ese contributions had strong in�uence in making clear that a network structure derived
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Table 3.1: Non extensive list of works applying similarity analysis. (*) �is paper
Variable (unit) Transform. Main cat Side cat Proximity measure

Ja�e (1986) Patents Firms Technological �elds Cosine
Teece et al. (1994) ownership of plants in industries Firms Industries
M. Porter (2003) Employment (#) Industries US states Pearson corr
Breschi et al. (2003) and Engelsman and van
Raan (1994)

Patents (#) Patent Id Technological �elds XTX , cosine

Zhang and Horvath (2005) Gene Expression Gene Locus Pearson corr
M. A. Porter et al. (2005) vote (nay = -1, yea = +1, else = 0) Roll-call votes Representatives XTX ,XXT

Hausmann and Klinger (2007), Hidalgo and
Hausmann (2009), Hidalgo et al. (2007), and
Tacchella et al. (2012)

Exports (USD) LQ>1 Product (HS / SIC) Country min cond. Prob. (prox-
imity)

J. Wang and Yang (2009) mean daily temperature Chinese cities Time periods
Coscia et al. (2013) joint appearance in online docu-

ments (’hits’) (#)
Countries — organiza-
tions — Issues (key-
words)

(idem) LQ>1 of hits

Boschma et al. (2012) Exports (USD) LQ>1 Product (HS / SIC) Spanish region (NUTS
3)

min cond. Prob. (prox-
imity)

Boschma et al. (2014) and Santoalha and
Boschma (2020)

Patents (#) LQ>1 Firms Technological �elds min cond. Prob. (prox-
imity)

Hausmann and Ne�e (2016) Labor �ow (#) (LQ - 1) / (LQ + 1) Industry Industry
Petralia et al. (2017) Patents (#) LQ>1 Country Technological �elds Cosine
Iglesias (*) Employment, Firms (#) No transfor-

mation, log,
LQ > 1

Industries (NAICS) counties Pearson corr, cosine,
cov, XTX , min cond.
Prob. (proximity)

from similarity measures o�ers a quantitative tool to estimate how industry or technology

categories relate to each other. �en, it became useful to branches of Economic Geography

studying capabilities of labour (F. Ne�e et al., 2011), knowledge di�usion and technological

evolution (Balland et al., 2015; Boschma et al., 2014). It helped mapping landscapes of tech-

nological (Alsto� et al., 2017) or productive capabilities (Hausmann & Ne�e, 2016), grouping

regions based on what happens inside them, among other applications interesting to other

branches of economic geography. 2

Table 3.1 shows the similarity methods used in these and other contributions. �e content

of its columns highlight the speci�c features that make each work be di�erent to the rest, but

they also represent factors that unite these works under a single framework.

Analogous rationales for relating entities appear o�en in works out of geography, as is

natural to expect. And they can be interpreted from the points of view of bipartite networks,

correlation structures, dimensionality reduction techniques, and other equivalents.

Empirical data that �ts rectangular matrices happens o�en across scienti�c �elds. In �nan-

cial analysis of time series, the side is usually made of time intervals and the structure of so

called cross-correlations have been widely studied in a rich strand of literature mainly featured

in the journal Physica A with a kick starter contribution in Plerou et al. (1999), among oth-

ers. �is strand has thoroughly studied the spectra (i.e. eigenvalue distribution) of correlation
2Further possibilities for applying similarity analysis with an interesting variety of con�gurations can be

found in Nedelkoska et al. (2018) and Farinha et al. (2019).
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matrices from �nancial time series. It is clear by now that it is useful to express correlation ma-

trices as the sum of a ’modal’ matrix, a groups structure matrix and a noise matrix, all obtained

directly from the eigenvalues and eigenvectors of the empirical correlation matrix. A recent

work dealing patiently with the caveats of computing some clustering in a network derived

from a correlation structure is MacMahon and Garlaschelli (2015). Results from this strand of

literature can be helpful for approaching the community detection in correlation structures.

Another discipline in which this data type is widespread is in genomics. In that context,

gene expression data is naturally displayed in a rectangular matrix where columns stand for

di�erent genes and rows indicate expression levels under various conditions (Y. R. Wang &

Huang, 2014). A squared similarity matrix is usually built. Research in an interdiscipline

involving genomics and computational statistics delves further into the details, choices and

implications of this type of analysis (eg. Zhang and Horvath (2005)).

If the strands of Economic Geography working with similarity measures placed more im-

portance on the mathematical identity of the indices it wants to use (ie. discouraging continual

creation of new independent indices, and keeping track of the implications of each transfor-

mation of raw data and how di�erent indices can be formally related), it could bene�t largely

by borrowing from powerful technical developments arising in these other disciplines. In ad-

dition, results within the �eld would be more easily comparable to each other.

3.2.2 Focus of this paper: Areas are side categories

�e focus of this paper is on the speci�cities derived from having geographical units as one

side of the cross section. In such a se�ing, cooccurrence techniques must be related to other

techniques of spatial analysis. �is connection has however not been formally addressed to

the best of our knowledge.

In M. Porter (2003), ’locational linkages’ among industrial activities are inferred from Pear-

son correlations of employment disaggregated by (4 digit) SIC industry categories and US State.

A more recent work that makes use of such locational correlations is Diodato et al. (2018).

Another index of industry to industry coagglomeration is proposed in Ellison and Glaeser

(1999). It is de�ned as the covariance of employment shares (normalized by one minus a

Her�ndahl index). If we work at a single level of disaggregation this last normalization does
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not play a role. On top of that, in practical cases it will be very close to one. A simpli�ed

version of the index would then be taking just the covariance of employment shares. �is

index is ’similar in spirit’ to the Pearson correlations that Porter uses. �e shares covariance

of Ellison and Glaeser (1999) are unfortunately hard to match analytically with the similarity

measures computed on absolute values. �is is why they are excluded from the analysis of

this paper, even if they would be worth including in follow up studies.

Many papers have countries as side categories, eg Hausmann and Klinger (2007) and Hi-

dalgo et al. (2007). Even if these are geographical areas, one should acknowledge that they

are relatively few units with disparate sizes of about 4 orders of magnitude between extremes

in terms of surface area, population or gross product. Instead, if we take a single country or

region, and split it into a large enough number of small areas of about the same size we are

closer to bridging point based pictures to small comparable areas arranged in a kind of la�ice,

to larger regions that contain a bunch of these areas. Indeed, we will �rst apply our analysis

on the contiguous United States of America split into (nearly 3200) counties of about (40km)2

average size. �ey o�er some of the few cases of a large region split into uniform small areas

of comparable size (even with a few exceptions), in addition to good quality data, strong and

varied economic activities throughout the country and compiled quite harmonically in central

agencies. Successful tests on US counties would be a �rst step before applying the methods

on evidence from other parts of the world. �is analysis in thus a substantial improvement

over the very coarse picture one can get from the 50 states as in M. Porter (2003). Smaller

geographical units allow �ner resolution of spatial pa�erns.

�e issue of how to interpret a high correlation of spatial distribution is usually not ad-

dressed formally. Multiple reasons can lead to such observation. �is issue is of course not

simple to approach, but it is nevertheless needed before outcomes of studies can be safely

interpreted.

Finally, a promising alternative approach to pairwise similarities of industries based on

their distribution over areas has been put forward in van Dam et al. (2020), who introduce the

use of pointwise mutual information. �is index has reasonable foundations and understand-

ing its exact relation to the rest of correlation measures may be a useful exercise. �is however

would demand a dedicated study that we have to leave for the future.
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Much of the information on regional economics have administrative areas as the basic unit

of analysis. An issue that has been discussed is the e�ects of arbitrariness in administrative

divisions’ size and shape. �e fact that �rms can be in the border of an area and show no

co-location with �rms just across the border, while they would co-locate with distant �rms

within the same district may in�uence the results. �is issue has been acknowledged for long,

o�en as the Modi�able Unit Area Problem (MAUP). See for example Hennerdal and Nielsen

(2017) and Menon (2009) for review and further discussion.

Even if the arbitrariness of administrative borders is a factor that will unavoidably alter

results, if there is only one version of the underlying facts, then continuous and discrete mea-

sures of it should not contradict each other. �at is, on average two points close to each other

are likely to lie in the same area, and two points far from each other are likely to lie in di�erent

areas. Irregularities of areas would introduce a certain distortion but it cannot mess up with

this principle completely.

�e idea of having solutions to the MAUP is for example discussed in Dark and Bram (2007).

Some works such as Duranton and Overman (2005) and Scholl and Brenner (2016) present it

as a reason for choosing point based measures instead of areal measures. Instead, I would like

us to see they can all be interpretations of a single observation of a given spatial pa�ern. �is

will be developed in Section 3.6 where we will probe the formal connection between areal and

point data, o�ering a solution to the MAUP in studies of co-location.

3.3 Data and Methods

We test the methods on the contiguous United States, both due to their intrinsic weight as

a major economy where a wide variety of economic activities take place, and because it is

known to present multiple known geographies and spatial pa�erns in its vast territory. �e

source of information for this study are recent editions of the County Bussiness Pa�erns (CBP)

datasets, produced by the Bureau of Labor and Statistics (BLS). Among other possibilities, the

CBP data o�ers a dissagregation of the variables ’average annual employment’, ’number of

establishments’ and ’total annual wages’ into more than 3200 counties and 300 NAICS 4 digit

industries.
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We leave activities that show a dependency based on administrative decisions out of the

analysis. �ese includes mostly non productive activities registered more or less intensely

depending on the conventions adopted within each US State. 3

3.4 Review of the formal framework

�e arbitrariness in the design of any classi�cation of activities and their interpretation at

the stage of data creation, as well as the researchers’ use of chains of transformations can

altogether heavily in�uence the outcome of any study. �is constitutes the gap between actual

phenomena and the data which is �nally used (eg for a regression). �e methodological stages

that make up this gap however fall out of the focus of most papers, as the a�ention is placed on

an answer o�ered to some question. Unfortunately, these answers may loose force if there are

open issues regarding the methods. For this reason we would like to review the steps where

many studies depart from each other partially undermining comparability of results.

�erefore, in these next sections we will brie�y review the formalisms that let us view the

methods in multiple papers as variants of a single ’similarity approach’ (cf. Table 3.1), and then

review the choices at the stage of data processing, and the particularities that may let datasets

from di�erent studies be inherently di�erent from each other.

3.4.1 �e similarity measures

Given a matrix X(n×p) we may want to know whether its columns or rows have some re-

lations among them. For this question, answers can come from multiple association coe�-

cients such as the matrix product XTX . �ere are other measures that can ful�ll this role,

such as Pearson correlation, cosine similarity and covariance. If we have a pair of columns

Xj = (x1j, . . . , xij, . . . , xnj)
T and Xj′ , these similarity measures are de�ned as follows:

3Namely: ’NAICS 2213 Water, sewage and other systems’, ’NAICS 4854 School and employee bus transporta-
tion’, ’NAICS 4911 Postal service’ ’NAICS 6111 Elementary and secondary schools’, ’NAICS 6113 Colleges and
universities’, ’NAICS 6241 Individual and family services’, ’NAICS 7132 Gambling industries’ ’NAICS 8131 Reli-
gious organizations’, ’NAICS 8141 Private households’, ’NAICS 9211 Executive, legislative and general govern-
ment’, ’NAICS 9221 Justice, public order, and safety activities’, ’NAICS 9231 Administration of human resource
programs’, ’NAICS 9241 Administration of environmental programs’, ’NAICS 9261 Administration of economic
programs’.
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Pearson correlation:

Corr(j, j′) = rjj′ =

n∑
i

(xij − X̄j)(xij′ − X̄j′)

||Xj − X̄j||||Xj′ − X̄j′||
(3.1)

where j, j′ represent a pair (e.g. a pair of industries) X̄j denotes the mean of column j

and the square norm is naturally de�ned as ||Xj − X̄j|| =
√∑n

i (xij − X̄j)2 and the same for

column j′ in place of j.

Cosine similarity:

CosSim(j, j′) = rii′ =

n∑
i

xij xij′

||Xj||||Xj′||
(3.2)

we can again see that Corr(Xj, Xj′) = CosSim(Xj − X̄j, Xj′ − X̄ ′j).

Sample covariance:

Cov(j, j′) =
1

n

n∑
i

(xij − X̄j)(xij′ − X̄j′) (3.3)

where n is the number of counties. �ese measures are partially related to each other as

can be seen from their formulas. In certain special cases, a XTX product, covariance matrix,

cosine similarity or Pearson correlation becomes identical to some of the other measures.

If the column variables are centered (their mean is zero) the covariance matrix isCov(Y ) =

Y TY/(n − 1), with Y = X − X̄ . If we z-standardize the columns (demean and divide them

by the standard deviation) Pearson correlation will match the covariance, i.e. Corr(Z) =

ZTZ/(n − 1) with Z = (X − X̄)/std(X). If instead we unit scale the columns of X , that

is, we scale the columns so that their sum of squares is 1 (their norm is 1) then we can have

the cosine similarity matrix. Cossim(V ) = V TV with V = X/||X||. If we had centered the

matrix before unit scaling, i.e. with a matrix W = (X − X̄)/||X − X̄|| then we again obtain

the Pearson correlation matrix, this time equal to the cosine similarity matrix as is the case for

centered matrices. �is is Corr(W ) = W TW = Cos(W ).

�is discussion emphasises that if the matrix ful�lls some properties the expressions for

covariance, Pearson correlation or cosine similarity can be compacted in an inner (i.e. matrix
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dot-) product. In general, however, our empirical data (X) would not ful�ll those special con-

ditions on their rows or columns. �en, these measures will partially di�er from each other.

If we are counting populations or total nominal values of output or one directional trade then

the X matrix will not be centered. In general, empirical data will not be normalized or stan-

dardized even if we could allow this transformation in some cases. We may however not have

a strong justi�cation for applying these transformations, so that it is best to not transform the

raw data and con�rm whether some of the similarity measures coincide or not when applied

on our particular empirical case.

�e possible sets of categories

Even if mathematically it would not make di�erence to transpose our rectangular data and

exchange the role of rows for that of columns and vice versa, we will adopt the convention to

call the columns the main categorization, and call the rows the side one. �is means that the

covariance and other similarities will be de�ned for pairs of the main variables based on the

values they take on the side variables.

When dealing with empirical data we may rely on classi�cations, e.g. for political entities,

time periods, industries, occupations of workers, technological categories of patents, traded

products or services, research �elds and disciplines, etc. �ese classi�cations have multiple

possible levels of aggregations, o�en hierarchical but not necessarily. Higher levels of dis-

agreggation can allow detection of more speci�c phenomena but at the same time increase

noisy values from li�le populated categories, possibly exacerbating distortions from arbitrari-

ness at the step of data collection.

In this work we use counts of formal employment classi�ed by administrative regions (US

counties) and industry (NAICS).

Transformations of the observed data

Transformations of the original data are very frequent. �ey in�uence the outcomes of any

study in a sensible way but o�en not enough a�ention is placed on them. �e most frequent

transformations are logarithmic transformation, and the Location quotient (LQ) usually fol-
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lowed by a binarization. Expressing raw data in logarithmic scale can help arrive at a more

natural distribution of the matrix values. For example, nominal monetary values or counts of

people are o�en be�er expressed a�er a log transformation that can let matrix entries’ values

follow a bell shaped distribution a�erwards. �e so called ’Location �otient’ (o�en called

’Revealed Comparative Advantage’ (RCA) in the context of international trade as in Balassa

(1965) or Hidalgo et al. (2007)) involves dividing entries of the rectangular matrix by the partial

margins and implies comparing the observed values to those expected if marginal distributions

were independent. 4 ’Binarization’ (o�en applied a�er computing LQ) transforms the original

matrix elements into a boolean (0, 1) telling where the variable was higher than a thresh-

old. Depending on the application, it is possible that we want to know just where something

happens and not to which extent it happens, which is what a binarization achieves.

Units of measurement

Depending on the speci�c application, the observations may refer to numbers of people, nom-

inal value in some currency, number of patents, among multiple other possibilities.

Naturally, when all the data are consistent in the choice of unit of measurement (for exam-

ple values in USD) mathematical tools can be applied more powerfully. When we mix di�erent

kinds of variables into a single rectangular matrix we may have problems at the transforma-

tion stage. Eg. if one column has values in [0, 1] and the rest are population numbers in the

thousands, an LQ or a row-wise z-score will be ’broken’ for the �rst column. �is needs to be

contemplated in each particular application.

3.5 Unifying a whole family of discrete coexistence mea-

sures

As we have discussed, similarity measures given by di�erent de�nitions may match each other

in special cases. In the cross sections of employment or number of establishments by county

and industry the conditions of centered, normalized data are not ful�lled. Still, it is worth
4If the raw data is well distributed in logs it is advisable to use the log of the location quotient.
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exploring to which extent these discrete similarity measures can still match each other in our

se�ing.

A�er plo�ing all values of pairwise similarity according to the multiple discrete similarity

measures we detect a clear correspondence only in the following cases:

• cos(X) ≈ corr(X)

• XTX ∝ cov(X)

For the �rst item (cos(X) ≈ corr(X)), the correspondence is an identity. For the second

one (XTX ∝ cov(X)) it is a proportionality. �ese relations are also observed if the raw data

X was transformed to log(X), both for measures of employment by county and industry,

and number of establishments by county and industry. �ese are illustrated in the plots of

Figure 3.1 applied on employment level data. Analogous results are observed for number of

establishments data.

Figure 3.1: Sca�erplots with direct comparison of selected industry pair similarity measures from US employment
by county data. �e notation is (top plots): corr(): Pearson correlation (eq. 3.1), cos(): cosine similarity (eq. 3.2)
cov(); (bo�om plots): covariance (eq. 3.3), XTX(): simple joint coocurrence. �e arguments can be raw data
(X) or log transformed data (log(X)). Top plots are depicting a near identity. Bo�om plots (log log scale) show
a proportionality. �e proportionality factor is related to the number of counties (denominator in eq. 3.3). �ese
clear connections between similarity indices suggest paths for uni�cation of methodologies applied in di�erent
studies.

If we widen the choices of possible measures of similarities and transformations of the

original data (X) we can uncover a whole family of similarity measures that agree on which
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are the most and least similar pairs of activities. In that sense, we can argue they are all

imperfect measures of a single property of industry pairs that we should call their ’similarity

by US counties’. �is family includes at least all measures that apply a log transformation, or a

binarized location quotient, or possibly do not transform the original data at all, followed by

applying a similarity among: cosine, Pearson correlation, covariance, dot product (XTX) or

Hausmann Hidalgo proximity. All 15 possible combinations thereof are partially equivalent,

at least in our se�ing of employment and number of establishments by US county and 4 digit

NAICS industry. �e speci�c correspondence between each pair of these measures can be

appreciated in the plots of Figure 3.2 which compares ranks directly. �e closest the points

are to the diagonal, the closest the ranking of similar pairs of activities according to a pair of

measures match each other.

Among all the explored similarity measures there are two which we will use further in the

remaining of the paper. We take them as references for the whole family of US county based

similarity measures. �ese are:

• Pearson correlation of log(X)

• cosine similarity of X

with X being the observed employment levels or alternatively the number of establish-

ments, by US county and 4 digit NAICS activity.

�e �rst measure is justi�ed in that the distribution of values in rows and columns of X

acquire near gaussian or other well de�ned distributions when transformed by log(X). It makes

sense to compute Pearson correlation once the matrix values show a distribution closer to a

normal. In our case, where does a high correlation of log variables lead to? To see this assume

two industries X, Y such that their employment levels ful�ll Corr(logEx, logEy) ≈ 1. �en

logEy ∼ a log(Ex) + b, with a, b real coe�cients of a line. From there Ey ∼ eb Ea
x . In the

cases of high correlation (all pairs with correlation higher than 0.85), we are able to �t this

linear regressions and �nd that a ≈ 1 in all cases, and b ≈ 0 with a standard deviation of

0.35. All in all this tells us that in our case, a high correlation of log variables indicates that

the employment levels of the pair of industries are roughly proportional to each other.
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Figure 3.2: Comparison of rankings for multiple measures combining 5 similarity measures (cosine similarity,
Pearson correlation, covariance, Hausmann Hidalgo proximity and dot product) applied on the cross section of
employment by NAICS 4 digit industry and US county and two transformations thereof (logarithm and bina-
rization of location quotient). Results applied to data of number of establishments are analogous. In some cases
it is hard to asses their exact relationship analytically. Nevertheless these rank plots show that in most cases
there is not a sharp contradiction on which pairs of activities are (dis-) similar to each other. �e accumulation
on diagonal corners, together with empty (0, 1) and (1, 0) corners show that they all agree in the extreme cases,
suggesting that we can take them as alternative measures capturing a single underlying similarity. Notation: see
caption of Figure 3.1. Also, HHprox() stands for proximity as in Hidalgo et al. (2007) (minimum conditional
probability). �e argument binLQ(X) stands for binarized location quotients.

�e focus on the second measure (cosine similarity) comes from a �rst principles approach

to the problem of coexistence of industry facilities. We will show in Section 3.6 how cosine

similarity can be used as a measure of actual coexistence (within a typical distance) of the
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locations that belong to a pair of industries.

Now, we have two indicators of similarity that can be linked to models involving employ-

ment levels or to spatial micro foundations. Furthermore, even if we do not explore a direct

link between Pearson coe�cient of the log variables and cosine similarity, we do see that these

measures do not contradict each other. �ey generally agree on which pairs of industries show

high similarity and they also agree with a larger family of measures that capture the same un-

derlying characteristic of a pair of industries: their similarity by spatial distribution.

In the rest of the analysis we will use both these measures, computed for the variables ’em-

ployment level’ and ’number of facilities’. �e four outcomes thereof are not exactly equivalent

but we will see they depict a coherent account of spatial pa�erns by which economic activities

are distributed across the US. Results change when changing the similarity measure relatively

more than they do when changing the observed variable.

3.6 Matching discrete to continuous coexistencemeasures

In this section we look for conditions under which measures of coexistence in continuous

space match the outcomes of cooccurrence in administrative areas. Here we are also o�ering

tools to evaluate caveats in the use of discrete areal data for cooccurrence, o�en framed un-

der the title of ’Modi�able Area Unit Problem’ (MAUP). �e MAUP argument is brought by

Duranton and Overman (2005) to motivate avoiding using an index like that of Ellison and

Glaeser (1997). Instead, we choose to �nd out the conditions under which continuous and dis-

crete coexistence indices should agree on their outcomes. In particular, we �nd a connection

between continuous accounts of coexistence and cosine similarity on county based levels.

Works in spatial analysis have repeatedly pointed to issues when using administrative

districts as the basic unit of analysis. �ese type of areas can have di�erent surface areas, pop-

ulation or economic relevance, they can have irregular shapes and the distance that separates

each pair of districts may be unacknowledged in some analyses.

To study these potential issues methodically, let us introduce a model of continuous space.

Assume any establishments has an in�uence around it that is a function of distance to the
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establishment location. �is in�uence is formalised as a probability density function.5 An

industry will be described by the collection of facilities that belong to it. And so, the in�uence

of an industry in continuous space is the sum of probability density functions describing all

plant locations:

Fx(x) =
Nx∑
i

fx,i(x)

where the subscript x refers to industry x, the vector x refers to position in a 2D plane, the

subscript i is for each plant belonging to industry x, and Nx is the total number of plants that

make up industry x.

If taken as probability distributions, the joint probability that two industries are in�uenc-

ing a place x is given by the product of probabilities: Fx(x) Fy(x).

For a graphical representation of such Fx(x), Fy(x) and Fx(x) Fy(x) see the le� side of

�gure Figure 3.3. If we wanted to add up all places across the country in�uenced by both

industries x and y, we compute the integral:

∫∫
R

FxFydR (3.4)

where R represents the whole area of integration (the whole country).

A cosine similarity between a pair of industries is a normalized dot product. �e dot prod-

uct of the vector of areal employment for industry x and industry y is the x-th, y-th element

of the matrix M = ET · E where E is the matrix of employment by area. �is is:

Mx,y =
∑
a

Ex,a.Ey,a =
∑
a

(
Nx,a∑
i=1

Exi

Ny,a∑
j=1

Eyj

)
=
∑
a

∑
i∈x,a
j∈y,a

ExiEyj (3.5)

For a graphical representation of Ex,a, Ey,a and their product, see the right side of �gure

Figure 3.3. �e lower plots is for the product of employment levels. �e grid demarcates the
5�is probability density function can have a shape designed to proxy transport costs, probability of inter-

action with workers of the establishment, potential demand, �ts of gravity models, etc. It can typically be an
exponential radial decay (Laplace), a 2D Gaussian decay, or any other reasonable bounded PDF.
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Figure 3.3: Demonstration of setup for continuous space (le�) versus areal data (right) comparison. Top plots
relate to locations of natural gas extraction �elds (industry x). Middle plots relate to locations of oil re�neries.
Lower plots are the result of multiplying the upper plots. Grid lines depict arti�cial square areas of 100km width
(map coordinates are UTM 14S). In these particular plots the probability function of the point locations has width
b = 100km. Lower le� are products of density functions and the lower right are coocurrence measures.
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modelled areas a. �e exercise in this section is simply to compare a normalized volume under

the R2 → R function in the lower le� plot to the normalized area based product in the lower

right plot.

Can the dot product between two industries expressed in their areal values be compared to

the overlap of their density functions? In the continuous case, in principle the density function

of each �rm has an overlap with all others.

Expressed from the density functions of individual plants:

∫∫
R

FxFydR =

∫∫
R

(
Nx∑
i

fx,i(x)

Ny∑
j

fy,j(x)

)
dR

�is sum will potentially consist of Nx. Ny terms, as the density function around each

location can have a non negative overlap to all other locations. Distributing the product of

these sums and because of the additivity of integrals:

∑
i∈x
j∈y

∫∫
R

fx,i(x)fy,j(x)dR

 =
∑
a

∑
i∈x,a
j∈y

∫∫
R

fx,i(x)fy,j(x)dR


which can be separated into sums for each area, where the terms involving a �rm xi in

area a are assigned to such area.

Now let us compare the contribution of the areal terms, both in the discrete and in the

continuous case. �at is, how we can draw a relation of the type:

∑
i∈x,a
j∈y

∫∫
R

fx,i(x)fy,j(x)dR

 ∼∑
i∈x,a
j∈y,a

ExiEyj

For managing this, we will distinguish four possible situations that apply to each of these

pairs of x, y locations. To make this description easier we will say that two locations i, j

overlap or that they are close to each other if
∫∫
R

fifjdR is signi�cantly larger than zero, or

non negligible. �ere are two conditions here, �rms may overlap or not in the continuous

space, and �rms location may lie within a single area, or not. �e combination of these two

conditions gives us four situations to consider. We will call these:
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Figure 3.4: Micro accounting of coexistence between facilities belonging to a pair of industries (le�) or a single
industry (right). All links belong to 4 sets we named A,B,C,D, depending on whether they share the same
administrative area and whether they actually are close to each other in the continuous space.

A �e pair overlaps and shares the area.

B �e pair overlaps while belonging to di�erent areas

C �e pair does not overlap, but they belong to the same area.

D �e pair does not overlap and they belong to di�erent areas.

�is is illustrated schematically in Figure 3.4.

Spli�ing the pairwise relations like this will allow relating the individual terms of pairs, for

pairs falling into the condition A le�ing us move further. �e cases in B and C will introduce

di�erences between the continuous and discrete accounts. �ese are the situations sometimes

raised in a criticism to the use of areal data and in the discussion of the MAUP problem.

Namely, points can be close to each other and lie in di�erent areas, and points can lie in the

same area while in practice being far from each other. Separating these terms allows us to �nd

out in which cases they will become small enough for the terms in A to dominate the relation.

�e pairs in D contribute to the agreement between the continuous and discrete accounts 6.

Expressing the relation split according to these cases we have:

LHS =
∑
i,j∈A

∫∫
R

fx,i(x)fy,j(x)dR +
∑
i,j∈B

∫∫
R

fx,i(x)fy,j(x)dR

RHS =
∑
i,j∈A

ExiEyj +
∑
i,j∈C

ExiEyj

6Mostly, these terms will describe the pair which are de�nitely far from each other. In the continuous case,
depending on the shape of the density functions we will have a non negative term for any pair, however they
will be negligible, as it happens for the area below two gaussians separated by several standard deviations from
each other
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these expression will match each other if the terms in the �rst sum match for each i, j and

the sums over cases B and C are relatively small.

For reducing the terms from pairs in C we need that areas are not much larger than the

radius of in�uence of a location. For the pairs in B, we need that locations from a given area

do not overlap with locations from neighboring areas, which will be the case if the radius

of in�uence is not much larger than the area itself. �erefore these di�erences between the

diuscrete and the continuous account will be relatively smaller if the area of in�uence we

model around the locations is about the size of the typical administrastive area, not much

smaller, not much larger.

As for the terms in A, the sums will be equal if each of the terms in them are equal. �at

is we ask that:

ExiEyj =

∫∫
R

fx,i(x)fy,j(x)dR; ∀i, j ∈ A

3.6.1 Normalizations

It is useful in practice to let the coexistence of an industry wit itself be equal to 1. For this a

normalization needs to be introduced in the de�nition of the dot product and the joint prob-

ability (equations 3.4 and 3.5). We rescale the joint probability, so that when computed for a

function on itself the result is 1 and we let the normalized joint probability to be independent

of a proportional scaling of the density function of some of the industries (for example by

changing Fy for 2Fy). 7 �e expression for the normalized joint probability would read:

∫∫
R

FxFydR√∫∫
R

F 2
xdR

√∫∫
R

F 2
y dR

(3.6)

An analogous requirement, but applied in the dot product of areal vectors from the last

section actually leads us to an expression of cosine similarity, that is:
7�is will also let it ful�ll the condition that an arbitrary spli�ing of an industry category does not alter results

signi�cantly
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∑
a

Ex,a.Ey,a√∑
a

E2
x,a

√∑
a

E2
y,a

(3.7)

�e separations into terms of the previous paragraphs can be kept unaltered, so that we

will still want the summationsB and C to be small, and we will have an expression where the

amplitudes in the continuous and discrete cases are link to each other. �at is:

ExiEyj√∑
a

E2
x,a

√∑
a

E2
y,a

=

∫∫
R

fx,i(x)fy,j(x)dR√∫∫
R

F 2
xdR

√∫∫
R

F 2
y dR

; ∀i, j ∈ A (3.8)

3.6.2 Solution for industry self-overlap

Applied to some industry x on itself this will be:

E2
xi∑

a

E2
x,a

=

∫∫
R

f 2
x,i(x)dR∫∫

R

F 2
xdR

; ∀i, j ∈ A (3.9)

We could now introduce some possible expressions for f(x) in order to have a speci�c

relation between these density functions and the magnitude of employment.

We can consider the following cases:

• Gaussian

gx,i(x) =
ti

2πσ2
e−(x−µi)2/(2σ2)

• or Laplace (exponential decay)

fx,i(x) =
ti

2b2
e−|x−µi|/b

�ese two functions are characterized by three parameters. An amplitude, here represented

in t (the density functions for an individual plant are not normalized (the volume under them

is not 1) unless t=1). �ere is a width parameter, given by σ and b respectively, and a position

parameter given by the 2D vector µ.
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�e area integral of the product of two 2D Gaussian bells separated by a distance ∆ is:

∫∫
R

gx,i(x)gy,j(x)dR =
titj

2π
(
σ2
i + σ2

j

) exp

(
− ∆2

2
(
σ2
i + σ2

j

)) (3.10)

and we are asking that this is comparable to ExiEyj (Eq. 3.8). Note that in Eq. 3.10 there is

a dependence with the distance ∆. While this is natural to expect, it means that the integral

joint density depends not just on the magnitude of the points but also on their relative position,

captured in the term ExiEyj only in a binary fashion, either they share the same district or

they do not. To deal with this di�culty we will proceed as follows: in the remaining of this

section I consider the case of self cooccurrence, where ∆ → 0, and in the following section I

study the general case of any ∆ through computational simulations.

In the limit that ∆→ 0

∫∫
R

gx,i(x)gy,j(x)dR→ titj

2π
(
σ2
i + σ2

j

) (3.11)

Density functions of exponential decay may not have an easy expression for the volume

under their product. But when ∆ = 0 we have:

∫∫
R

fx,i(x)fy,j(x)dR =
titj

2π (bi + bj)
2 (3.12)

To summarize these two results, consider self overlap of an industry (then ∆ = 0, and

i = j) and let eqs 3.11 and 3.12 be expressed as:

∫∫
R

h2
x,i(x)dR =

t2i
2πs2

i

(3.13)

where si ≡ 2σ2
i if assuming Gaussian in�uence around point locations, and si = 4b2

i id as-

suming an exponential decay in�uence (Laplace).

In the case of similarity of an industry with itself Eq. 3.9 links overlaps in continuous

space with the observed counts of employees by establishment. Replacing 3.13 into 3.9 we

can �nd out the intensity of the density function of an establishment in terms of the observed
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employment of the establishment. �is tells us how to normalize the density functions for the

discrete to continuous equivalence in 3.9 to hold. Taking square root of 3.9:

Ex,i
||Ex,a||

=
ti√
2πsi

1√∫
A
F 2
xdR

Where ||Ex,a|| is simply the euclidean norm of the employment by area vector. From there we

�nd we need:

ti =
√

2πsi


√∫

A
F 2
xdR

||Ex,a||

Ex,i (3.14)

for the discrete and continuous accounts to match each other.

�is last equation is telling us that the framework we devised is consistent as long as the

intensity of the probability density function of an establishment is proportional to its number

of employees. �e proportionality factor is given by two factors: the ratio of the norms in

discrete and in continuous space, and a normalization by the width of the in�uence (wider si
would be met by by a smaller ti that balances out the width e�ect). 8

3.6.3 Solution for cross industry overlap

�e generalization of the results of last section to spatial coexistence between a pair of indus-

tries (i.e. continuous and discrete accounts described by Eq. 3.8 instead of Eq. 3.9) requires

that instead of the simpli�ed equation 3.13 (valid when ∆ = 0) we use an expression such as

Eq. 3.10 valid for any establishments distance ∆.

�ere are, however, important obstacles when trying to express the coexistence of estab-

lishemnts from a pair of industries in continuous space. First, the volume under the product

of two (bell shaped) density functions may not have closed form expressions. �is happens

already when considering radial the exponential decay. Even the expression for the area of the

intersection between two circles is non trivial. We sort this out by integrating numerically.
8�e norm in continuous space does itself depend on ti. To sort out this conundrum think that (once si are

�xed) the condition of proportionality to Ex,i implies the relative magnitudes among all ti are �xed, and so a
change in ti implies a change of equal proportion in all tj , ∀j 6= .i. �is means a change in equal proportion in
Fx and then the relation in 3.14 would be preserved.
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In the computational experiments that will be described next, we use square, equal size

areas. �en, results are clean from irregularity of area shapes, although we do test the role

played by area sizes. 9

Even if we could have an approximate expression for joint probabilities at any ∆ and even

if we assumed square, �xed size areas, there are further di�culties that cannot be easily treated

analytically. On the one hand, each pair of ’overlapping’ establishments (i, j ∈ A,B) in general

need that we consider their own separating distance ∆ij . In the computational experiments

all separations ∆ are the same, and I sweep across a wide range of ∆. �en, I am estimating

the dependence with ∆ if these were all the same. In an actual empirical se�ing, there would

be an e�ective ∆ that is representative of the distance between an average overlapping pair

of establishments.

On the other hand, whether a pair of establishments is in the same area or not depends

on the relative location of the i establishment within its area, and the magnitude and angle

of distance to the j establishment. An analytic treatment is possible only on probabilistic

grounds.

In short, the best path for comparing discrete area vs. continuous accounts in general

is by computational experiments. �e experiment I present here is intuitive and consists of

the following procedure. De�ne hypothetical administrative areas by a square grid. Load the

actual spatial distribution of establishments of an industry. Generate copies of this distribu-

tion, but let all establishment positions of a copy be shi�ed a distance ∆ in random angles.

�en, compute discrete cooccurrence (cosine similarity) and integrate numerically the prod-

uct of continuous density functions between the original data and each of the copies. From

there we will have estimates of expected discrete and continuous cooccurence, as a function

of ∆ and for various administrative area sizes. In this way, we will �rst be able to study the

continuous/discrete correspondence suggested in the preceding sections as a function of the

parameters of the problem.

�e outcome of this experiment is �rst illustrated on Figure 3.5, applied on the location of

oil re�neries, with 100km2 square areas. Generalizations of the experiment applied to natural
9�e vast majority of US counties in the contiguous US states are of similar size, making this procedure

reasonable. Results might not apply if administrative areas are of extremely di�erent sizes.
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Figure 3.5: (Top) Decay of coexistence measures with distance ∆. Cosine similarity on admin. areas (black)
and overlap of density functions in continuous space (colors). Density functions are radial exponential decay,
computed for various width parameters (see legend). On the le� end (∆→ 0) there is full overlap and coexistence
is near 1. On the other end (∆ � 1) there is no overlap and coexistence is near zero. �e interesting feature
is the transition between these extremes. We can see that discrete coexistence matches the continuous account
of coexistence only when the width b of establishments density functions is slightly less than b̂ = 30km. �e
dashed vertical line shows the area size.
(Bo�om) Maps with circles around establishment locations (blue) and ∆ shi�ed locations, for three values ∆ =
10km, 50km, 200km, denoted as A,B,C on the upper plot.

gas extraction locations and repeating the exercise for 10km2 areas are shown in Figure 3.6.

�ese generalizations allow us to abstract results from the distribution each speci�c industry

studied, and probing the role played by area sizes.

�is exercise tests the decay of coexistence when we move slowly from a full coexistence

situation (co location of establishments with themselves, le�) to a zero coexistence situation

(right). We see that the parameter describing the in�uence of establishments (b) governs the

onset of the decay of coexistence measured in continuous space. �is is to be expected. Addi-

tionally, we observe that the discrete account (where we have computed cosine similarity of

total employment by areas as a measure of similarity) also presents a decay of similar shape.

Given that the decay of coexistence in continuous space is shi�ed when increasing b, there

has to be an intermediate b for which the continuous and discrete accounts match each other.
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In the preceding discussions, we said that for having few pairs of establishments matching

conditions B ad C the width b has to be not much larger than areas, and not much smaller

than areas respectively (cf 3.4). From the computational exercises we see that continuous and

discrete accounts match each other best if b ≈ 0.3d (denoting area size as d).

US counties are∼ 160km2 size on average. A square county of this area is 40kmwide. �e

result of simulations are telling us that if we use cosine similarity as cooccurrence measure

for employment by county we are testing coexistence assuming in�uence of establishments

decaying radially with a parameter b ≈ 13km.

In the previous section we have seen that a whole family of discrete coexistence mea-

sures are partially equivalent. So that with all these developments we are �nding the concrete

meaning of coexistence measures when applied on US county data.

Figure 3.6: Decay of coexistence measures with distance ∆. Cosine similarity on admin. areas (black) and overlap
of density functions in continuous space (colors, see legend). Results for two industries (le� - right) and for two
area sizes (10 km, top - 100 km, bo�om). �e decay of discrete area coexistence (black) appears linked to area
size (gray vertical line), as they both shi� by the same amounts.

In Figure 3.6 I replicate the decay test for two area sizes and two di�erent industries. From

here we can see that results just discussed are largely equivalent on both industries tested.

Also, we con�rm that the decay of area based measures is directly related to the size of areas.

Larger areas mean considering coexistence at a larger distance (the relative location of the

black curve and the vertical gray line is preserved when changing area size).
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3.7 Application: what correlation structure tells about in-

dustries and regions of the United States.

So far we have seen that many similarity techniques are partially equivalent to each other

and can be interpreted as coexistence in continuous space. We have also seen that area size

determines the distance at which coexistence is detected. In the remaining sections of the

paper I show the actual correlation structure we observe in our data and discuss it brie�y.

�e square matrix encoding the correlation structure can be translated into an adjacency

matrix, i.e. a matrix that de�nes a network. In such networks each industry is a node, it can

be taken as an industry space. Each node has a spatial distribution across counties. Nodes

within a community, or cluster of tightly connected nodes, approximately share a common

distribution across space. �en, because of having geographical units on one side of the cross

section, the correlation structures will also lead to geographical pa�erns.

In the next subsection 3.7.1 we introduce the methods applied to arrive at an industry space

and geographical pa�erns and in subsections 3.7.2 and 3.7.3 I show and discuss the results.

3.7.1 Methods for analyzing correlation matrices

�ere are techniques particularly adapted to processing similarity matrices. �e eigenvalues

of random matrices are studied theoretically and have known distributions. Correlation ma-

trices however, tend to have a single large eigenvalue linked to the main mode of the matrix.

Subsequent eigenvalues are much smaller but can still be larger than the largest expected

eigenvalue of the random matrix, therefore suggesting they are linked to non-random struc-

ture of the correlation matrix. �e remaining majority of eigenvalues match the eigenvalues

of the random matrix.

It turns out, that a correlation matrix can be expressed as a sum of components related

to each eigenvalue and their eigenvectors. Indeed, because of being a real symmetric matrix,

C(p×p) ful�llsC = U ΛU−1 withU an orthogonal matrix (i.e. U−1 = UT ) so thatC = U ΛUT .

�e similarity (real symmetric) matrices can be decomposed as:
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C =
∑
k

λkuku
T
k =

∑
k

λkVk (3.15)

where λk, uk denote the k − th eigenvalue and eigenvector, and so that Vk ∈ Rp×p.

�is connection is useful for ’cleaning out’ the correlated background (main eigenvalue)

and le�ing us capture (slightly) far from average values of the correlation matrix that suggest

(positive, null or negative) association between industries.

�e decomposition in Eq. 3.15 works similarly for cosine similarity and correlation of logs

matrices. We illustrate it graphically in Figure 3.7 where we can grasp the conceptual idea of

what we achieve with this decomposition: removing the main component leaves us with an

underlying structure which we call groups structure. Further components only contain small

�uctuations.10

Figure 3.7: Decomposition of similarity by eigenvalue components (eq. 3.15)

Even if it would seem natural to take a correlation matrix, or cosine similarity matrix

directly as adjacency matrix of a network, it is be�er to do this extra processing �rst. It is

not uncommon that the majority of industries follow a common trend (e.g. they are nearly

proportional to all-industries totals), which is re�ected by a degree of correlation among most

industry pairs, and therefore a ’complete’ network structure with a single community.
10One can take 20 or 30 components without much di�erence in outcomes.
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At this point, we are close to the framework of a principal component analysis (PCA). For

applying this technique we need to �rst center the dataset by subtracting industry means. Use

X to denote the centered data. �e covariance matrix is C = XTX/(n − 1) and we have to

diagonalize it to arrive at the principal components. �is diagonalization leads to V −1CV =

D, where D is the diagonal matrix with eigenvalues of C , and U has the eigenvectors of C in

columns. �en, for concluding the PCA decomposition, we would look at the eigenvectors of

the �rst few largest eigenvalues.

On the one hand, PCA can relate to the processing of correlation matrices I am proposing,

because in both cases we are diagonalizing the similarity matrices. Nevertheless, what I am

proposing is to express the similarity matrix itself as a sum of a �rst eigenvector (modal)

component plus subsequent few eigenvector groups components (Eq. 3.15) as in Plerou et

al. (1999) and later plo�ing communities of this network on the map. As opposed to taking

principal components that can be plo�ed on the map.

�e two techniques can be seen as complementary analyses. Studying their connections

fully can be certainly interesting. Some of the di�culties though, have to do with the data

centering. We may take logs as a preprocessing step, still there are key di�erence between

Pearson correlation and covariance that would need to be addressed. If we did the analysis as

in Plerou et al. (1999) but using the covariance matrix, the gap between this technique and PCA

would be: what is the di�erence between spatial pa�erns from the principal eigenvectors, and

spatial pa�erns shown by communities of the ’groups’ contribution to the covariance matrix.

�is is an open question for future research.

We apply Scikit Learn (Python module) spectral clustering algorithm with all its options

in default values11. We repeat the ��ing with 10 (or 15) di�erent random seeds and obtain

groups of industries that are grouped together in all these optimizations. �is way we �nd

’cores’ of comunitites that are strongly similar among each other and weed out activities that

can jump in between communities because they link weakly to more than one core.

As we explained in the previous section, we explore the outcome of applying Pearson

correlation of logs and cosine similarity to both employment levels and number of estab-

lishments. �ese constitute four criteria that we label: A - corr(log(establishments)), B -
11Documentation for sklearn.cluster.SpectralClustering
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cos(establishments), C - corr(log(employment)), D - cos(employment). We apply the discussed

community detection process on each of these four situations and see that communities from

these four outcomes partially overlap. For this speci�c step, the algorithm we apply is to see

in which clusters (computed in one of the four combinations) more then 50% of the activities

of any given cluster are contained. Reciprocally, we ask that it cluster represents at least 10%

of the cluster it is potentially contained in. In that way, if for instance the activities of two

clusters computed by D - cos(employment) and B - cos(establishments) are 10 in each and

there is an intersection of 6, we associate these two into a single component. We study these

components. As another example, if a cluster of 5 activities from C - corr(log(employment))

is contained into a very large cluster of 60 activities from D - cos(employment) we keep it

separate. �e idea is to not merge all small, possibly interesting clusters of activities into very

large overarching components.

�e goal of this process is to reassure that outcomes are robust enough to not fade away

when changing choices of similarity matrix or the speci�c measure of economic activity.

To sum up, the processing steps for results in Section 3.7 are the following:

- Averaging yearly values in 2002-2007. �is can be stored as a rectangular table X of

shape (3272, 320), with counties as rows and industries as columns.

- Computing cosine similarity and Pearson correlation of the log values between indus-

tries from this cross-section.

- Decompose the similarity matrices by their eigenvalues and study the structure of groups,

which is non random and independent from the general trend.

- Apply spectral clustering to detect cores of activities that link strongly to each other, see

what is the geographic pa�ern that they depict and discuss these outcomes.

3.7.2 Results: Network of industries

Let us begin by presenting the network structure of industries. To begin understanding the

outcome, we can look at Figure 3.8. Here each node corresponds to a NAICS 4-digit industry.

�e plot on the le� is derived from correlation of log levels and the one on the right from
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cosine similarity. Given that the results are largely analogous when changing between number

of establishments or employment level, we extract the groups component of the similarity

matrices and average the similarity computed from each of these variables to arrive at a single

network plot.

Following the community detection methods described in detail in Section 3.7.1 I detect 11

components. �ese are represented in colors in the networks of Figure 3.8. �ey are listed in

Table 3.2.

Figure 3.8: Networks of industries. Le�: from groups component of correlation of log levels. Right: from groups
component of cosine similarity. Edge weights computed from employment levels and number of establishments
are averaged for each plot. �e colors depict the components we built from clustering in each of the four variable
- similarity combinations (cf Section 3.7.1). LINK TO INTERACTIVE PLOT

An online version of this plot (link in �gure caption) allows exploring the network inter-

actively. To gain further intuition into the regions of the plo�ed network, the plots of Figure

3.9 successively highlight some of the most common words in industry titles: manufacturing,

services, transport, wholesalers, stores. We use the coexistence network, although the outcome

of this exercise is largely analogous if one used the correlation structure.

Finally on Figure 3.10 we paint nodes according to wage levels. Even if it is not clearly

distinguishable in the plot, certain components of the network are characterized by a higher

than average wage level. �ese are the components related to urban activities, including in

NAICS categories: 51 Information, 52 Finance and insurance, 53 Real estate and rental and
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Figure 3.9: Network of industries. Highlight of frequent words in industry titles. �e aim of this plot is to help
understand the regions of the networks plo�ed in Figure 3.8.

leasing, 54 Professional and technical services.

Figure 3.10: Network of industries. Clusters by community detection (le�) and wage levels (right). Only clusters
of urban activities are characterized by a (higher) average wage level. �e rest of the clusters have mixed wage
levels.

3.7.3 Results: Geographical patterns

�e so called components we just discovered are neighborhoods of the network of industries.

Neighbors in this network show a high locational correlation, they share a common distribu-

tion over space. Neighborhoods of the correlation structure can thus be identi�ed to spatial

pa�erns. In this section we explore the pa�erns coming out of this analysis.

I group the components into four themes, or types of spatial distribution (cf table 3.2). �ese

are population, cities, land uses and manufacturing. �ere is a di�erent factor dominating the

location of industries in each of these themes. Respectively these are consumer demand, urban

agglomeration externalities, availability of a natural resource, and manufacturing externalities.

�e following table summarizes the components we could detect:

Next we review them in further detail.
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�eme Component
Population Non tradables: stores and personal services

Cities
Large city economies I
Large city economies II
Other high wage activities

Land Uses

Agriculture and Food I: Ranching
Agriculture and Food II: Corn Belt
Water Economy
Fuels and Mining
Forests and Timber

Manufacturing Manufacturing I: Steel Belt
Other manufacturing and other activities

Table 3.2: Summary of detected �emes and Components

Population

�e activities in this theme are those that most closely match the distribution of population.

Even if these activities may not follow it exactly, the distribution of population is a reference

to many accounting considerations and as such its acknowledgement is useful and justi�ed.

In practice, the activities that fall in this category are mostly retail shops and personal

services (such as restaurants), in other words, consumer goods. Two factors combine for the

location of shops to show this pa�ern. �ese businesses have people as customers, and prox-

imity to customers is central in their strategy (Berman, 2010; Runyan & Droge, 2008). In these

industries, demand appears as a decisive factor for location. References discussing these facts

are multiple. For example, referring to Los Angeles, Fujita et al. (1999) distinguish ”on one side

of �lm studios, arms manufacturers, and so on who produce for the U.S. or world market, on the

other side of restaurants, supermarkets, dentists, and so on who sell only locally.” (p 27). �ese

la�er are precisely the types of activities that fall under our ’population’ theme. M. Porter

(1980) also draws a connection between dependence on demand, and intensity proportional to

population: ”In consumer goods, demographic changes are one key determinant of the size of the

buyer pool for a product and thereby the rate of growth in demand. �e potential customer group

for a product may be as broad as all households, but it usually consists of buyers characterized by

particular age groups, income levels, educational levels, or geographic locations.”.
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Figure 3.11: Population-linear scaling of activities in the ’population’ theme. Right: sca�erplots of data (NAICS
4451 Grocery stores, NAICS 6211 O�ces of physicians, NAICS07 7221 Full-service restaurants, NAICS07 7222
Limited-service eating places). Le�: qualitative scaling pa�ern.

Non tradables: stores and personal services.
Distribution Activities

NAICS 238 Construction contractors
NAICS 44-45 Retail trade
NAICS 53 Real estate and rental and leasing
NAICS 54 Professional and technical services
NAICS 62 Health care and social assistance
NAICS 72 Accommodation and food services
NAICS 81 Other services, except public administration

Table 3.3: Non tradables. LINK TO INTERACTIVE MAP

Cities

Cities are of course a notorious singular feature of our society. �ere is an abundance of discus-

sions about what is the magic of cities, with questions approached from a variety of literature

strands. When it comes to quanti�cation, a tool that appears promising and convenient is that

of scaling, given it quanti�es apparent externalities related to city size.

�e cities theme comprises activities such as NAICS 5112 so�ware publishers, NAICS 5418

advertising, NAICS02 5161 Internet publishing and broadcasting, NAICS 5416 management

and technical consulting services, NAICS 4251 electronic markets and agents and brokers,

NAICS 5415 computer systems design, NAICS 5616 investigation and security services, NAICS

5614 business support services, NAICS 5414 specialized design services, NAICS 5511 manage-
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ment of companies and enterprises.

Let us �rst show that these activities present particular features of scaling, which distin-

guish them from activities in the ’population’ theme. In this way we also o�er a possible path

for connecting our results with some formal accounts. �en we will brie�y mention strands of

literature studying the phenomena of cities. Discussing in depth these formal and conceptual

approaches to cities is however out of the scope of this paper.

Figure 3.12: Delayed onset and superlinear scaling of activities in the ’cities’ theme. Right: sca�erplots of data
(NAICS 5241 Insurance carriers, NAICS 5416 Management and technical consulting services, NAICS 5418 Ad-
vertising, PR, and related services, NAICS 5614 Business support services). Le�: qualitative scaling pa�ern.

On �gures 3.11 and 3.12 we show the scaling pa�erns of industries in the ’population’ and

’cities’ themes respectively. �e schemes on the le� show our interpretation of such scaling

pa�erns, exaggerated for clarity. �e horizontal axes stand for county population, and the ver-

tical ones stand for population in each of the industries. �ere is a point for each county with

non zero employment in the industry. Activities which abound proportionally to population

would show all points on the diagonal line. Instead, we �nd that activities in the ’cities’ theme

are less than proportionally represented in small town and cities, but catch up to be more than

proportionally represented in larger cities. Actually, the distinction between these two groups

is somewhat blurry. All activities have a mixture of the two pa�erns, although it is clear that

activities in each of the themes lean clearly closer to one of the two limiting cases.

�e activities in the ’cities’ theme would typically be deemed as complex in the sense that

they did not exist decades ago and even today they are missing in poorer, less developed re-

gions. �ey can then be conceived as activities near a technological frontier. It is expectable

that this type of activities arise in large cities (as opposed to small towns or rural areas) al-
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though formalizing this intuition is challenging. �e framework of scaling (Be�encourt et al.,

2007) may be helpful for a goal of eventually quantifying correctly. �e superlinear scaling

(Be�encourt et al., 2007; Gomez-Lievano et al., 2012) would suggest that largest cities have

scale advantages over mid size cities. A superlinear scaling of a complex (knowledge or tech-

nology demanding) activities would be consistent with most of this activity appearing in large

cities and most of the activity of a large city being complex, but the details of this relation need

to be worked out carefully.

When it comes to the singularity of cities conceptually there are of course studies in many

strands of literature which would be hard to review comprehensively. Cities are relatively

more productive and show higher average educational a�ainment. Marshall (op cit) dedicates

lines to externalities involving skilled labor, although he typically refers to towns or certain

industrial districts, more than to large agglomerations as we know them today. Instead, Ja-

cobs (1970) centers her thesis on the fact that innovations near a technological frontier tend to

be engendered in large cities before possibly �nding ordinary longer term adoption in other

types of geographies. Indeed the activities we classify in the ’cities’ theme are near the tech-

nological frontier and are clearly knowledge intensive. �ere is a richness of recent works

studying learning and di�usion of specialized knowledge (Puga, 2010) and the development

of knowledge intensive, complex activities (Balland et al., 2015; Balland et al., 2020; Boschma

et al., 2014) to name only a few of these.

Large city economies I
Distribution Activities

NAICS 5112 So�ware publishers
NAICS02 5181 Isps and web search portals
NAICS 5182 Data processing, hosting and related
services
NAICS 5415 Computer systems design and related
services
NAICS 5417 Scienti�c research and development
services
NAICS 5612 Facilities support services
NAICS 5619 Other support services
NAICS 6114 Business, computer and management
training

Table 3.4: Large city economies I. LINK TO INTERACTIVE MAP

130

https://api.mapbox.com/styles/v1/matuteiglesias/ck15ixwiv04rh1cl8s82f8aa3.html?fresh=true&title=true&access_token=pk.eyJ1IjoibWF0dXRlaWdsZXNpYXMiLCJhIjoiY2ptdGN1bjViMDY4MzNxcDEyMXQ4ejU4bCJ9.wOgfXtbyetTot1CZN8D6Hg


Large city economies II
Distribution Activities

NAICS 51 Information
NAICS 52 Finance and insurance
NAICS 53 Real estate and rental and leasing
NAICS 54 Professional and technical services

Table 3.5: Large city economies II. LINK TO INTERACTIVE MAP

Other high wage activities
Distribution Activities

NAICS 51 Information
NAICS 52 Finance and insurance
NAICS 53 Real estate and rental and leasing
NAICS 54 Professional and technical services

Table 3.6: Other high wage activities. LINK TO INTERACTIVE MAP
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Land Uses

In words of Ellison et al. (2010) ”Natural advantages, such as the presence of natural inputs,

di�er spatially, and �rms may choose locations to gain access to those inputs.”. �is third theme

includes activities that have a natural resource as important input. Or else, those that are

near the upstream end of the supply chain and choose to locate their operations near the

primary establishments to save on transport costs. In these theme we �nd �ve components

each characterized by spatial pa�erns that point inequivocally to a type of natural resource.

Two components are related to agriculture, one including the grazing lands of Texas’ west

and other fertile areas for the production of crops and fruits in Washington state and in the

Central Valley of California, and the other one centered on the Midwest corn belt region and

Mississippi Valley.

Agriculture and Food I: Ranching
Distribution Activities

NAICS 111 Crop production
NAICS 112 Animal production and aquaculture
NAICS 311 Food manufacturing

Table 3.7: Ranching. LINK TO INTERACTIVE MAP

One component comprises all �shing activities and touristic and transportation activities

that take place in rivers, lakes and coasts. Ellison and Glaeser (1997) and Ellison et al. (2010)

discuss repeatedly about the importance of natural resource endowments for this type of ac-

tivities. In a more formal passage ”the e�ects of natural advantages on pro�ts are captured by

the random variables {πi}, which are chosen by nature at the start of the process when it assigns

resource endowments to each area […] these variances might be high in the shipbuilding industry

because the pro�tability of a state will depend greatly on whether nature has put that state on the

coast.” (actually the level of such πi would be high in coastal states, not just their variance).
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Agriculture and Food II: Corn Belt
Distribution Activities

NAICS 1111 Oilseed and grain farming
NAICS 1122 Hog and pig farming
NAICS 311 Food manufacturing
NAICS 4245 Farm product raw material merch. whole-
salers

Table 3.8: Corn Belt. LINK TO INTERACTIVE MAP

Indeed we are detecting pa�erns that seem to point at natural resources and determining

what are the industries in them. With this exercise we are able to detect those activities to

which Ellison and Glaeser are referring. In the case of coastal activities, the counties endowed

with access to water form one of these spatial pa�erns. From that point of view, the compo-

nents we are showing would be telling the counties endowed with a speci�c natural resourse

(fertile lands, forests, water access or minerals).

Water Economy
Distribution Activities

NAICS 1141 Fishing
NAICS 3117 Seafood product preparation and packaging
NAICS 3366 Ship and boat building
NAICS 4831 Sea, coastal, and great lakes transportation
NAICS 4832 Inland water transportation
NAICS 4872 Scenic and sightseeing transportation,
water
NAICS 4883 Support activities for water transportation

Table 3.9: Water economy.

�e next component in the natural resource theme includes activities of oil and gas ex-

traction, as well as extraction of other minerals. In addition, some of their �rst downstream

activities, such as manufacturing of petroleum and coal products (NAICS 324) fall into this

component.
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Ellison and Glaeser (1997) notes ”plants in the cane sugar re�ning and shipbuilding industries

might be coagglomerated because coastal locations provide higher pro�ts both for shipyards and

for importers of bulky commodities”. An additional quote on the same idea: (Ellison et al., 2010)

”Agglomeration and coagglomeration can also appear empirically even if there are no gains from

locational proximity. […] For example, the ship building and oil re�ning industries might be

coagglomerated simply because both prefer coastal locations.”.

As a way to rationalize these ideas, consider �rst that if two activities overlap fully then

they essentially share a single distribution. Otherwise it can happen that a pair of activities of

a di�erent kind coincide in some context. Indeed it is true that many oil re�neries lie on the

coast (Texas, Louisiana) and then share space with coastal activities. �e volume under their

joint density functions as in Section 3.6 will be non null along this coast and will contribute to

certain overlap in continuous space. Also, counties on this coast will have employment in both

industries and so they will add to measures of co-occurrence. �e technique we are applying,

however, is made for distinguishing these two factors and classifying industries accordingly.

Fuels and Mining
Distribution Activities

NAICS 21 Mining, quarrying, and oil and gas extraction
NAICS 324 Petroleum and coal products manufacturing
NAICS 3251 Basic chemical manufacturing
NAICS 486 Pipeline transportation

Table 3.10: Oil and gas. LINK TO INTERACTIVE MAP

�e last component we �nd in the natural resource theme are forest products industries.

�e pa�ern presented by this component matches closely the distribution of natural forests.

�e large majority of forest area in the US is non industrial privately owned. If the fraction of

industrial timberland is approximately uniformly distributed it is expected that the primary

stages of wood processing industries will follow the overall distribution of natural forests. At

the upstream there is supply of raw materials including fuelwood and industrial roundwood
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which depend directly on the forest area and forest stock. �is needs to be supplied to pro-

cessing facilities (eg. mills) and it is convenient for these industries to be near the resource. In

between is the transformation of wood into products, and at the other end is the demand for

end products (sawnwood, wood-based panels, paper and paperboard) (Alig et al., 2003). �e

industries in this other end are grouped among the manufacturing activities and the logistics

of their value chain may play a more important role to explain their spatial distribution.

Forests and Timber
Distribution Activities

NAICS 1131 Timber tract operations
NAICS 1132 Forest nursery and gathering forest
products
NAICS 1133 Logging
NAICS 1153 Support activities for forestry
NAICS 3211 Sawmills and wood preservation
NAICS 3212 Plywood and engineered wood product
mfg.
NAICS 3371 Household and institutional furniture mfg.

Table 3.11: Forests. LINK TO INTERACTIVE MAP

Manufacturing

�e fourth and last theme is manufacturing. It comprises activities in the NAICS categories 31

to 33. �e distribution of these activities does not point clearly to population, natural resources

or cities. �e factors then le� to explain the location decisions of industrial establishments

are externalities of di�erent kinds, built on historical paths of arbitrary or reasonable origin.

Such externalities have been the focus of extensive research. As an early antecedent there is

the proposed organizing criteria of Marshall (1890), who directed a�ention to a few mecha-

nisms simpli�ed as transport cost externalities (mainly the availability of intermediate goods),

availability of labor (labor market pooling being the typical example) and ’ideas’, meaning

specialised and technical knowledge. �ese have been joined over time by other mechanisms

such as proximity to a natural resource, pooling of demand, costs of distribution, competition

forces, among others (Beaudry & Schi�auerova, 2009; de Groot et al., 2016; McCann & Folta,

2008). All these might in�uence �rms decision to base their plants. However, each of these
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mechanisms is qualitatively di�erent and may combine in special ways to determine each of

the speci�c plant location choices that happened over time. Heterogeneities are expectable

and have been the subject of recent studies (Diodato et al., 2018; Ellison et al., 2010).

�e main industry sectors I identify are linked to the steel value chain, including the au-

tomotive and autoparts industry and their suppliers. �is single example presents most, if

not all of the mentioned externality channels across a network of thousands of heterogeneous

businesses located throughout the US (with higher density in the Midwest region south of

the Great Lakes). Other sectors in this theme, such as the textile industry are examples of

activities that have developed in regional clusters. North Carolina has the largest textile mill

industry and is the leading US state in textile exports. �is industry existed for more than a

century in the region. It is an example of path dependency in economic development and it

also suggests an important role played by industry related tacit knowledge and possibly the

existence of externalities leading to the formation of the cluster. All this would help explain

why the industry did not continue to grow in regions other than North Carolina.

Manufacturing I: Steel Belt
Distribution Activities

NAICS 325 Chemical manufacturing
NAICS 326 Plastics and rubber products manufacturing
NAICS 327 Nonmetallic mineral product manufacturing
NAICS 331 Primary metal manufacturing
NAICS 332 Fabricated metal product manufacturing
NAICS 333 Machinery manufacturing
NAICS 335 Electrical equipment and appliance mfg.
NAICS 336 Transportation equipment manufacturing

Table 3.12: Manufacturing. LINK TO INTERACTIVE MAP

3.8 Conclusion

�is paper is centered on understanding the correlation structures derived from cross sectional

data of intensity of economic activities by (a large number of small) geographical units. First

I show how a variety of techniques for detecting coexistence from this type of data are par-
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Other manufacturing and other activities
Distribution Activities

NAICS 31-33 Manufacturing
NAICS 48 Transportation
NAICS 51 Information
NAICS 52 Finance and insurance

Table 3.13: Other than steel belt manufacturing and other activities. LINK TO INTERACTIVE MAP

tially equivalent among themselves (Section 3.5). I then explore the connection to coexistence

accounts computed from continuous space (i.e. based on establishments’ point locations and

employment levels) (Section 3.6). Finally from these similarity measures I compute a network

of industries (industry space) and I show that communities in this network stand for clear

geographical pa�erns linked to speci�c drivers of estabishments’ location.

More speci�cally I show that, both on employment and in number of establishment data,

both using data in linear levels and in log levels, cosine similarity tends to match Pearson

correlation, and covariance is proportional to simple joint cooccurrence XTX . �ese are the

clearest relations among similarity measures in our data, but in fact I show that among all

techniques that apply cosine similarity, Pearson correlation, covariance, joint cooccurrence,

or Hidalgo et al. (2007) proximity as similarity measure on raw data, log transformed data, or

binarized location quotient data, there is a rank correlation. In other words, any of these ��een

slightly di�erent techniques lead to partially equivalent rankings of industry pairs by similar-

ity. In the remaining sections we use Pearson correlation of log levels and cosine similarity

of linear levels as proxy for the whole family of similarity measures. �ese two are chosen

because they are closest to having theoretical and practical interpretations, unlike some of the

other similarity measures.

We also see that cosine similarity of the vectors of intensity by area can be linked to actual

overlap of point locations. �e basis of this continuous-discrete identity is deduced by using

calculus. �e conclusion though is reached thanks to computational simulations that acknowl-
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edge the arbitrariness of actual distributions of point locations of establishments, a task that

is quite challenging to complete analytically. We �nd that for square shaped administrative

areas, assuming an exponential decay (of typical distance b) of the in�uence of a point location

with distance, cosine similarity matches actual coexistence of facilities within a radius b about

30% as large as the area width. In this way we o�er a way out of the conundrum of the modi�-

able area unit problem, at least when it comes to the computation of correlation structures. At

the same time we discover that cosine similarity of employment levels by area has a relevant

micro interpretation. Co-location from areal data (cosine similarity) is tuned to measure in-

teractions acting at a distance proportional to the average size of areas. Correlation structures

can then be a lens focusable at di�erent distances. �is may allow studying heterogeneities

across industries by sensing at which distances a pair of industries coexist with each other.

Once the interpretation of these similarity measures is clear, I look at the ’industry spaces’

they imply and I map the neighborhoods of these networks. �e goal of this last exercise is to

validating the techniques by analyzing the outcomes. We determine several distinct pa�erns

that explain the spatial distribution of most activities. �e data driven approach of looking at

the correlation structures leads directly to concepts o�en theorised in Economic Geography.

�e detected pa�erns (and drivers) for the location of most industries are among the following:

population (consumer demand); agriculture, fuels and minerals, forest and timber, coastal and

water economies (presence of natural resource); manufacturing (agglomeration forces) and

large cities (urban externalities). �ese themes and components of the correlation structure

are illustrated and discussed brie�y.

With this exercise, we have used empirical data and objective mathematical tools (correla-

tion matrices, its eigenvalue decomposition and spectral clustering to detect communities) and

arrived at a classi�cation of activities. �is analysis was prohibitive only some decades ago

due to its computational and data demands. And yet, it is quite remarkable that its outcome

aligns clearly with re�ections by Marshall (1890), (ch. XI) where he states: �e characteristic of

manufacturing industries which makes them o�er generally the best illustrations of the advan-

tages of production on a large scale, is their power of choosing freely the locality in which they

will do their work. �ey are thus contrasted on the one hand with agriculture and other extractive

industries (mining, quarrying, �shing, etc.), the geographical distribution of which is determined
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by nature; and on the other hand with industries that make or repair things to suit the special

needs of individual consumers, from whom they cannot be far removed, at all events without great

loss..

In our interpretation this a sign of the validity of Marshall’s analyses, as much as a sug-

gestion that correlation structures computed from areal data are a relevant objective tool of

analysis in Economic Geography. In this paper we have explored part of the technical context

surrounding the computation of correlation structures, with the hope that future studies can

safely and robustly use them to approach a variety of interesting questions.
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Chapter 4

Overlooked features of Location

�otients LQ = scp S/(ScSp)
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Abstract

Contingency tables appear frequently in empirical studies in Economics. Location quotient (LQ)

indices have been widely adopted as relative measure of intensity. �ey are de�ned as ratio be-

tween observed values and the expectation from uncorrelated marginal distributions (size factor).

If LQ = 1, the observation matches expectation. Higher values of LQ denote a relative high in-

tensity. �e values resulting from this transformation are known to not be comparable across rows

(columns) of the table, mostly because they are sensitive to the total sum of the row (column) in

question. Such e�ects however have not been formally studied.

In this paper I propose a line of reasoning for de�ning curves of �xed distance to LQ = 1. For

this, I �rst de�ne two dimensional coordinates that describe all pairs of observed values and size

factors. �en I compute the probabilities that LQt+1 > 1 given the parameters observed at t.

�is works as an a posteriori estimator of the chances of surpassing LQ = 1 a�er a time step

conditional on the coordinates of the starting point.

�is technique allows e�ective measurement of distortions dependent on the size of the rows

(columns) on the scale of the location quotient. For example, in the context of trade empirics (the

observed values are exports by country and product) I show and explain how, starting from an

equal level of LQ < 1 observations from smaller countries are more likely to surpass the LQ = 1

threshold than those from large countries. I �nd that the decay of volatility of log �uctuations of

exports with increasing size can explain the pa�ern of size e�ects in LQ levels.

Acknowledging these e�ects allows them to be controlled, in studies where location quotients

are used as dependent variable. Among other uses, such controlled level curves allow de�ning

intermediate LQ values, so that studies that used binary mappings before can now exploit a richer

variety of LQ categories consistent across all observations in a dataset.

4.1 Introduction

�e context for the developments in this paper are contingency tables where a total volume

(SW ) is disaggregated independently by two sets of categories (C, P). �at is, SW =
∑

cp scp
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where scp is the volume (s) accounted into categories c and p simultaneously. Concrete ex-

amples of this se�ing in economics can be the study of exports disaggregated by countries

and products or accounting patents disaggregated by city and technology classes, as well as

countless other scenarios that are mathematically equivalent.

Within that context, this paper is dedicated to studying a particular transformation of the

observed volumes scp which has been called the ’location quotient’ (LQ), and given by:

LQcp =
scp/Sc
Sp/SW

=
scp/Sp
Sc/SW

(4.1)

where Sc =
∑

p scp and Sp =
∑

c scp are the total volumes of categories c, p (we will also

call them the sizes). From eq. 4.1 one can see that LQ is the ratio between relative size of

element scp on column p and relative size of row c in the matrix total. A transposed version of

this statement is valid as well.

LQ has been introduced in studies involving international trade �ows mostly a�er the

antecedent of Balassa (1965), who coined the name of revealed comparative advantage index

(RCA). �e LQ index is mostly meant to be compared to a threshold value to provide a binary

variable LQ > th. �e value th = 1 is special because when LQcp = 1 from equation 4.2 we

have:1.

ŝcp
SW

=
Sc
SW

Sp
SW

which is the condition that distribution of values is independent across countries and prod-

ucts (regions and technologies) in determining expected ŝcp. �erefore when considering LQ

we are comparing observed values to a model of row and columns as uncorrelated probabili-

ties.

�e LQ can essentially be taken as an outcome of combining two quantities: the observed

levels and some expected levels. As such, the problem is two dimensional. For good expositions

in this line of reasoning see Kunimoto (1977), and sections I, II in Bowen (1983), section IV in
1I use the notation f(x) ≡ x > x0 for denoting the function f : R→ 0, 1 that takes value 1 if x > x0 and 0

otherwise. It is an expression that produces a boolean value.
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Vollrath (1991).

In logarithmic scale LQ can be taken as a di�erence between two factors:2

log(LQcp) = log(scp)− log (ScSp/SW )

�e goal of this work is to characterize size e�ects in LQ. �at is, we want to measure

whether LQ levels should be interpreted di�erently when computed for small entities as op-

posed to large entities.3 �e key innovation in this work, which has not been undertaken

before, is using the probability P (log(LQt+1) > 0|xt) (chances of being above the threshold

LQ = 1 at time t + 1, conditional on the state xt at time t) as an estimator of distance to

log(LQt+1) = 0. �e so called state xt de�nes any observation by its value in two coordi-

nates, for example x = (log(scp) = 6, log (ScSp/SW ) = 5.5) means scp is higher than the

expectation ScSp/SW , in particular, this pair implies log(LQ) = .5 > 0.

With these tools we o�er options for systematically studying open issues on the interpre-

tation of LQ values other than 1 and understanding the nature of size e�ects by which there

are distortions in the scale of LQ which depend on scp, Sc, Sp. �is is an open issue that needs

to be addressed if researchers want to arrive at trustworthy results when using LQ indices. In

addition, understanding the comparability of LQ levels across entities can allow use of new

techniques so far forbidden, such as robust replacement of the binary LQ > 1 by a set of LQ

level categories, once size e�ects are controlled for.

�e following sections are organized as follows. Section 4.2 reviews literature on location

quotient indices. Section 4.4 presents a convenient mathematical framework for studying LQ

indices and introduces the probabilistic LQ index, pLQ. Section 4.4.3 shows a possible method

for estimating pLQ and section 4.4.5 shows a model that can explain the size e�ect pa�erns

qualitatively. Section 4.5 concludes.
2�is transformation is justi�ed mostly because the levels scp themselves are well distributed in log scale.

Apart from that, log(LQcp) has multiple useful properties that LQ lacks, as will become evident throughout the
paper.

3by entities I refer to any of the categories c, p
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4.2 Literature Review

Apart from its use in international trade at least since Balassa (1965), LQ transformations have

been used in classi�ed patent counts at least since de Solla Price (1981) and Soete and Wya�

(1983). �e exercises in Hidalgo and Hausmann (2009), Hidalgo et al. (2007), and Tacchella et

al. (2012) use LQ in an early stage of data processing (exports data) and have revitalized its use

on sub�elds of Economic Geography dealing with regional development and technological

innovations, such as in Balland and Rigby (2016) relating patent categories to US cities. Of

course there is a variety of options for categories to �ll the roles of sets C , P used to classify

the total, generalizations to more dimensions can be incorporated, and the choice of classifying

criteria will depend the focus intended by each study. We can always opt between di�erent

variables as scp. Works such as F. Ne�e et al. (2011) and Hausmann and Ne�e (2016) describe

the prominence of industries in regions using the size of workforce as indicator variable and

relates industries with each other through the observed �ow of workers between them. �e

LQ has been applied in studies of �rm portfolios (Teece et al., 1994), plants in subnational

regions (F. Ne�e et al., 2014).

Hundreds of studies discuss outcomes of applying LQ on speci�c datasets, although only

a minority of papers are dedicated to studying the index itself.

Within this la�er group, most of the papers are embedded in the study of international

trade. In this context, the name given to the index is ’revealed comparative advantage’ (RCA).

Interestingly a large part of these works incline towards discouraging the use of LQ. �e two

main arguments for this are that (i) the LQ index as is would not ’reveal comparative advantage’

in light of existing trade models or theory, or (ii) certain characteristics of the observed LQ

values (such as an asymmetry about its median values, di�culties in comparability across

datasets) undermine its safe or consistent usability (for a clear and concise review of results

in this line of reasoning see the section I in Liu and Gao (2019)).

Bowen (1983) and Leromain and Ore�ce (2014) are examples of studies that prioritize trade

theories over the study of the LQ index itself. Unfortunately sometimes involving mathemat-

ically awkward expressions in the search for an index 4 or depending on speci�c trade models
4cf Cai and Leung (2008) replacing scp by nominal changes ∆scp in the middle of the LQ ratio, or Hoen and

Oosterhaven (2006) proposing to look at the di�erence of ratios scp/Sc−Sp/SW , or Redding and Proudman (1998)
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5. However, see French (2017) for a recent, fairly complete review of alternative RCA indices

suited to a range of special applications.

�is paper is centered on the index itself independent of the se�ing where it is applied. �is

is why I simultaneously consider LQ in the context of patent data and exports data, and why

I do not intervene on the compatibility between LQ indices and international trade models.

With respect to the second mentioned argumentative line o�en used to motivate departures

from Balassa’s LQ expression, I will argue that most of the alleged problems with the LQ index

are not critical, and the decisions to abandon it have been likely premature. On top of that,

the proposed alternative indices present important weaknesses.

�e location quotient as is, is no more and no less than a ratio from observed data in

a contingency table to the expectation from uncorrelated marginal probabilities. As such

it is worth studying, and it will continue to appear in di�erent contexts over the years. It

has been systematically observed in empirical se�ings that the sizes of parts of a disaggre-

gated total (also, the sizes shown by a population of agents) are well explained by a ’log’

distribution (Axtell, 2001), such as lognormal, or power law (Pareto). �is is also valid for

the volumes of exports disaggregated by country, by product, or by both simultaneously.

�e same property is true for the number of patents classi�ed by region and technology

class. If the values log(scp), log(Sc), log(Sp) are near normally distributed, one should ex-

pect log(LQ) = log(scp)− log(Sc)− log(Sp) + log(SW ) to be near normally distributed too.

In fact, in this paper I will work with the log(LQ). Essentially it would not be a separate index

from LQ. It is simply the same index in a di�erent scale.

In the remaining of this section I will review the main perceived problems with the LQ

index according to the literature. �e �rst series of problems exist if we stick strictly to the

values of LQ in linear scale. In that context, Hinloopen and Van Marrewijk (2001) and Hoen

and Oosterhaven (2006) look at country mean and see that this moment is usually far above 1

(the neutral value), unstable over time and across countries (Leromain & Ore�ce, 2014; Yu et al.,

2009). Other appreciations are that the shape of the distribution of the LQ is highly sensitive

to extreme values (De Benedictis & Tamberi, 2004; Hoen & Oosterhaven, 2006). Many of the

computing the ratio of observed shares to average shares (questioned already by De Benedictis and Tamberi
(2001)).

5For example Leromain and Ore�ce (2014) depending on Costinot 2012 trade model
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comments and choices in these papers suggest that they are not embracing the idea that it is

more reasonable to study the distribution of LQ levels in a logarithmic scale.

�e strong a�achment to values in linear scale is clear from phrases such as ”Hinloopen […]

empirically observe that the mean of the sectoral MRCAs (LQs) is well above 1. �is seems strange

as it suggests that each country has a comparative advantage in its ‘average sector’, whereas one

would expect the ‘average sector’ to be neutral in terms of its MRCA. (LQ)” (Hoen & Oosterhaven,

2006). Although it is perfectly natural that the nominal average of a log (normally) distributed

variable never points to an average sector.

Another frequent observation from studies that stick to the linear levels of LQ and do not

consider log levels is the ”high skewness” (De Benedictis & Tamberi, 2004; Hinloopen & Van

Marrewijk, 2001; Laursen, 2015). And the asymmetry: ”the Ballasa Index (LQ) has a strongly

asymmetric distribution with a fat right tail” (Laursen, 2015). �ese issues are regarded mostly

a problem for ��ing regressions using LQ levels as dependent variable. As mentioned before,

they motivate the creation of alternative indices, such as the regression or symmetric RCA, with

the formula SRCA = (LQ+ 1)/(LQ− 1) (Dalum et al., 1998; Laursen, 1998) which is a near

log transformation for non extreme values. �is index may have improved properties with

respect to LQ in linear scale, but its interpretation is not as straightforward (De Benedictis &

Tamberi, 2001) as it detaches further from actual observed values. In addition it complicates

analytical treatment. Further suggestions of non acknowledgement of the possibility that LQ

values are best expressed in logs are plots as in Hinloopen and Van Marrewijk (2001) where

the curves of CDF of LQ values in linear scale are all accumulated on the le� side of plots non

allowing an appreciation of a possibly bell shaped distribution of log(LQ) values.

�e single most signi�cant obstacle for using log(LQ) is the presence of multiple null

entries in any large contingency table (”Unfortunately, LRCA (log(LQ)) becomes minus in�nity

when the export is zero.”, Liu and Gao (2019)). Rather than minus in�nity, log of null values are

not de�ned. To that issue, we can say that if the null values are few, they can simply be ignored

for most uses. If instead the sparsity of the data is signi�cant, when taking logs the zero values

can be held on a separate account. Almost any desired study can still be performed by including

a dummy for null values or by allowing extensive margins where there is the possibility that an

observation becomes null, or jumps from being null into some positive level. In many practical
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cases, most of the value is concentrated on the largest agents, and so not only null entries, but

also a large part of the smaller entries may not hold a signi�cant share of total value, meaning

that both small and null entries may not in�uence aggregate outcomes signi�cantly anyway.

In short using log values of LQ does not imply a fatal problem, even if some of the entries

were null. Actually log(LQ) has been used naturally and without further questioning in papers

such as Vollrath (1991) (although quickly dismissed due to the null values issue) and also Bahar

et al. (2014), Boschma et al. (2016), De Benedictis and Tamberi (2001), Hidalgo and Hausmann

(2009), Liu and Gao (2019), and Soete and Wya� (1983) among others. In fact log(LQ) ful-

�lls some of the desirable conditions for a revealed comparative advantage index as asked by

Hoen and Oosterhaven (2006), i.e. the index has a stable mean or median, the index is symmet-

ric around the mean or median and the index has a stable distribution. Good performance of

log(LQ) in light of trade models has been veri�ed in Deb and Hauk (2015).

Log levels are also the convention in information theory. For instance, the pointwise mu-

tual information (PMI) measure of association is given by log(ρcp/(ρcρp)) where ρ stand for

probabilities. If we identify them with the probabilities observed in the data: ρcp = scp/SW ,

ρc = Sc/SW and ρp = Sp/SW , then we have log(LQ) = PMI .

�e parallelisms continue, it is known, for instance that the maximum value of PMI is

given by max{log(1/ρp), log(1/ρc)} = log(1/ρcp), which is a�ained either when activity p

exists only in location c, or when activity p is the only one in location c(van Dam et al., 2020).

�is parallels the observation that LQ has an upper bound from country size and product size

(exports, region size and technology class size in patents counts) (De Benedictis & Tamberi,

2001). Consider that if scp = Sc (the product is as large as it can get in the country) then

L̄Q = (Sp/SW )−1 and it should be lower than this in all other situations. Same can be derived

in the transposed case c↔ p. It means that for smaller countries and products LQ values have

higher upper bounds. In practice, small countries can achieve LQ levels that large countries

cannot.

�is type of observations suggested that in general the comparability of LQ levels across

entitites had open issues to be resolved. �ere is a consensus that values of LQ di�erent from

one do not have an absolute interpretation. �ese size e�ects, or distortions in the scale of

LQ are sometimes acknowledged informally and sometimes mentioned explicitly, as when
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(Leromain & Ore�ce, 2014) say ”[Balassa’s LQ de�nition] might imply huge values of Balassa

Index for very small countries”. Although there has not been an approach for a systematic

study so far. Size e�ects have not been exactly de�ned, and their dependence with parameters

of the problem has not been determined. Many papers in the literature simply apply cuts of LQ

levels at �xed values across countries and products, implicitly ignoring the issue Boschma et

al. (2016), De Benedictis and Tamberi (2001, 2004), and Hinloopen and Van Marrewijk (2001).

While it is possible that the outcomes of these studies are robust to such size e�ects, it is still

important to understand their origin and characterize their magnitude so that they can be

controlled for in future studies, or exploited in favor of speci�c research goals.

4.3 Data

We will use empirical information in two se�ings: value of exports by country and product,

and number of patents by country and technological category. In the �rst case, if we say the

matrixX describes the export volume scp of country c and product p. In the la�er case, we can

say a matrix N describes the number of patents ncp of region c and technology p, and a ratio

analogous to the one in 4.1 has been called index of Revealed Technological Advantage. In

the next sections, we will use the name ’Location �otient’ to refer in general to these ratios,

regardless of the context in which they are de�ned. Also, we will denote the matrix values

as scp, and the marginal totals as Sc and Sp referring to any of the two mentioned se�ings

indistinctly.

Empirical information on export �ows (in US$) accounted to 235 ’country’ categories and

1244 HS02, 4 digit ’product’ categories, for the 12 years within 2003 and 2014 (more than 1.7

million non zero entries) is sourced from UN COMTRADE, with �les openly available (here)

through the Atlas of Economic Complexity.

Information on number of patents is sourced from the OECD REGPAT database which

collects records at the European Patent O�ce (EPO) and the Patent Cooperation Treaty (PCT)

starting in 1978 up to 2015. We aggregate patents at 639 �rst level subnational units (’regions’)

and a total of 124 technological classes (’technologies’). We count with a total of 480 thousand

observations.
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4.4 Analytic steps

4.4.1 �e 2D space for log location quotients

In this section we will �rst introduce convenient representations for the 2D space that char-

acterizes all possible LQ values. �en, we will introduce the notion of a probabilistic location

quotient (pLQ), which is simply de�ned as the chances that LQt+1 > 1 conditional on the

situation at t, which is described by point in the mentioned 2D space. �e section continues

discussing results and applications.

We have seen that LQ can be wri�en as:

LQcp = scp/

(
ScSp
SW

)
(4.2)

where subindices c, p refer to a country and product category, and SW is the total sum of

the matrix, that is the total registered. I will call Sc and Sp the size of the categories c and p.

To be precise we should call it the total volume of exports in US$ (total number of patents)

assigned to category c, p, respectively. �e matrix X is typically measured annually. I do not

write time index unless it is necessary. 6

�e logarithm of the de�nition in 4.2 converts the ratio into a di�erence:

log(LQcp) = log(scp)− log (ScSp/SW ) (4.3)

And it turns out that the empirical distribution of these three terms is nicely bounded in

log scale, as can be seen from Figure 4.1.

Expressing location quotient as di�erence hints to a two dimensional space for the problem.

Indeed, equation 4.3 is one condition involving three independent terms, and so the system is

2 dimensional. Denote: y ≡ log(LQcp), x1 ≡ log(scp), and x2 ≡ log (ScSp/SW ) = log(Sp) +

log(Sc)− log(SW ) which I call the size factor.
6All observations necessarily belong to some year or time period and if there is no time index, all variables in

the equation belong to the same time period.
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Figure 4.1: Distribution of log(s), T and log(LQ) ≡ log(s) − T . �e cut at log(s) = 3 reveals the lower
bound in scp = 1000US$ in the dataset. �ese distributions of log variables are much ’be�er behaved’ than
those of the original LQ, x, or ScSp/SW . �e distribution of number of patents is largely constrained to the
natural numbers, and it is frequent to observe small values. �is feature is not very problematic. It explains the
fragmented appearance of its histogram and sca�er plots in Figure 4.2.

log(LQ) = log(s)− [log(Sp) + log(Sc)− log(SW )]

y = x1 − x2

(4.4)

Depending on the use one wants to pursue, we may choose to describe observations in the

axes LQ vs observed value (y, x1), LQ vs size factor (y, x2), observed value and size factor (x1,

x2) (right plots in Figure 4.2), or di�erence and mean (y = x1−x2, x = (x1 +x2)/2) (le� plots

in Figure 4.2). �e take away is that the state of country-product (region-technology) at year

t is fully determined by knowing the values for any independent pair of these variables. I call

the variable (x1 + x2)/2 mean size factor. On the mid of the transition where log(LQ) = 0,

we have x1 = x2 and so the mean size factor summarizes both the magnitude of x1 and x2. It

comes in handy as direction independent from log(LQ) = x1 − x2.

4.4.2 Probability that LQcp > 1 at time t + 1 conditional on the state

at t.

Many works seek to study how likely it is that the state of a country-product (region-technology)

hasLQ > 1, or whether there are factors that increase the chances that the state will pass from

LQ < 1 to LQ > 1 or vice versa (eg. Boschma et al. (2014), Hausmann and Klinger (2007),

and F. Ne�e et al. (2014), among many others). �e factors considered are usually motivated
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Figure 4.2: Distributions of observed points in log scale. Here the dots represent actual data points in our
dataset. Plots on the top are for trade data. Plots on the bo�om for patent counts data. Le�: points in
((x1 + x2)/2, log(LQ) = x1 − x2) coordinates. Right, points in (x2, x1) coordinates, with x1 = los(scp) and
x2 = log(ScSp/SW ). Le� plots can be transformed to right plots by applying a linear transformation. Dark lines
indicate axes log(LQ), x1, x2. A log transformation lets all observations form a bounded cloud.

by theory or speci�c research questions. �e very variable LQ, (or log(LQ) or LQt > 1) is

o�en included as predictor, and this is completely reasonable given that if observations are

relatively stable LQt+1 is likely to be near LQt and the condition LQ > 1 can be expected to

persist over time.

If we use LQt as the sole regressor for estimating the probability that LQt+1 > 1 we

con�rm this intuition. �is is shown in Figure 4.3 where we can see that being above or below

the threshold LQ = 1 is an important factor in determining whether LQt+1 > 1.

Note that the probabilityP (log(LQt+1) > 0| log(LQ)t) approaches 0.5 when log(LQ) ≈ 0

and in the limits of very low and very high log(LQ), this probability tends to approach zero and

one respectively. �is initial approach points to an extremely useful feature: an interpolation

between the 0, 1 values, that complements the discrete threshold by adding some structure to

this jump. �rough P (log(LQt+1) > 0| log(LQ)t) we obtain information about the width of
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Figure 4.3: �e discrete variable LQ > 1 (red), and the probability that P (log(LQt+1) > 0| log(LQ)t) (blue).
Plo�ed as a function of log(LQ)t.In the extremes both coincide, but near the threshold of log(LQ)t ≈ 0, the
la�er one provides a natural interpolation between the two values. Each dataset shows a certain transition width
suggesting that the scale of LQ is not unique for all datasets.

this jump measured from the chances that an observation will jump over the threshold in one

time period.

Another possible interpretation of this interpolation is as an e�ective distance to theLQ =

1 threshold. �is is one of the key points we are pu�ing forward in this work. Usually, we

have no information as to whether a value of, say LQ = 0.8 is close enough to LQ = 1 and

there are open debates as to how to treat values LQ 6= 1. However, in this way we can precise

that such a value meant an 18% chance ofLQt+1 > 1 in the dataset. I suggest an interpretation

of the gap 0.8→ 1 as the chances of seeing LQt+1 > 1 given LQt = 0.8.

For the next step, recall that the observations in the context of location quotients are deter-

mined by two independent variables. So that we are compelled to computing the probabilities

that an observation will be LQt+1 > 1 conditional not only on LQt but on an additional co-

ordinate simultaneously. Actually any pair of independent coordinates works, and I choose to

use (SpSc/SW )t, scp.

pLQ = P (LQt+1 > 1 | (SpSc/SW )t, st)

= P (st+1 > (SpSc/Sw)t+1 | (SpSc/SW )t, st)
(4.5)

�e indices cp have been omi�ed. In practice, it is more convenient to use the log levels,

pro�ting from the amenable the characteristics of their distribution:
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pLQ = P (log(LQ)t+1 > 0 | x2,t, log(st))

= P (log(s)t+1 > x2,t+1 | x2,t, log(st))
(4.6)

where x2 = log(SpSc/Sw) is the size factor.

A precise characterization of pLQ should be a baseline to be studied before a variety of

external factors are introduced to explain P (log(LQ)t+1 > 0). To the best of my knowledge

however, the approach presented here has not been pursued elsewhere, or at least it does not

seem to have been published. As a by product we will be able to characterize the e�ect that

the size of countries and products (regions, technologies, etc) have on the time evolution of

LQ, and so in the LQ index itself. As discussed previously, such distortions have been partially

acknowledged for long but not measured satisfactorily. We therefore o�er a step towards un-

derstanding the e�ects that complicate comparison of LQ across countries, products and time

periods.

Indeed, it is interesting to consider how we should interpret level curves of pLQ and how

they compare to levels of LQ. For example, consider two countries that for some product and

year show the same level of LQ (say LQ0 = 0.5) but di�erent levels of pLQ (such that we

expect, say 1% vs 10% chances of surpassing the threshold in the next year). Are they equally

distant to the LQ > 1 situation? On the same line: is it a desirable property for an index of

comparative advantage to be not dependent on the size of the country (product, etc) involved?

If the answer is yes, then we would want to acknowledge e�ects of the type discussed here

and be able to counter them out.

In the next section (4.4.3) I o�er a method for estimation of pLQ, and in section 4.4.5 I

discuss numerical reconstructions of pLQ derived from models of the growth rates of log(s)

and log(ScSp/SW ).

4.4.3 Estimation of pLQ

We estimate Prob(LQcp,t+1 > 1) given log(scp) and log(ScSp/SW ) by exploiting the in-

formation from all points observed empirically. �e problem is analogous to computing a
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density function, that is, what fraction of the points in a certain small region of the (log(s),

log(ScSp/SW )) plane ful�l the condition (LQcp,t+1 > 1). �ere are a few methods available

for this task, I decide for a k-nearest neighbor algorithm (knn), even if there are multiple al-

ternatives (i.e. partitioning the space in bins and computing their fraction of (LQt+1 > 1) in

them). In the knn method, we use the k nearest points in the (log(s), log(ScSp/SW )) plane

(called feature space in the context of knn regression) are used to compute the (LQt+1 > 1)

fraction, and assign such value to the probed point. A key advantage of using knn is that the

set of neighbors has a �xed size (I use k = 200 in both datasets) so that sparse regions do not

loose statistical robustness, and the high density of other regions leads to modelling at �ner

grained resolution. 7

�e outcomes are plo�ed in Figure 4.6, there I plot the estimated pLQ values as a function

of the mean size factor and log(LQ) (le�) and as a function of the observed values log(s) and

log(LQ) (right). �e coordinates used are those demonstrated in Figure 4.2. Top plots refer

to trade data bo�om plots to patent data. We can take both an ideal continuous probability

function and its estimations from empirical data as probabilistic location quotients: pLQ. 8

First and foremost, as seen before in Figure 4.3 it is clear that the space is split in two

regions (red, green). �ese largely correspond to the condition LQ > 0 ↔ x1 > x2 (green if

true, red if false).

Secondly, the most interesting feature is the transition zone (0 → 1) in between the red,

green regions. It shows a width, and this width changes along with the sizes of the involved

observations. If we say that the width of the transition between probabilities 0 and 1 is an

indicator of the inherent scale of the LQ values involved, then we are observing how size of

the c, p entities involved a�ect the scale of the LQ index. �ese are precisely the e�ects we are

seeking to characterize in this study.

More concretely, take the trade example: the plot of Figure 4.6 shows how for countries
7See Wu et al. (2008) for a review of the knn method in the context of other regressor algorithms. See also

Lo�sgaarden and �esenberry (1965) for an early discussion of the knn concept.
8A minimal snippet of code (python), which anyone can use to estimate pLQ given a dataset of observations

is in the Appendix. Refer to it for essential precisions on what the knn regressor is doing. Given any two
independent combinations of log(LQ), log(scp) or log(SpSc/SW ) the knn regressor can be used to predict pLQ.
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Figure 4.4: pLQ. Trade data.

Figure 4.5: pLQ. Patents data.

Figure 4.6: Plots of probability pLQ = P (log(LQ)cp,t+1 > 0|log(scp), log(SpSc/SW )) as a function of
log(SpSc/SW ) and log(LQ) (le�) and log(scp) and log(LQ) (right), computed on the trade dataset (top) and
the patents dataset (bo�om).
�ese probability densities are computed applying k-nearest neighbor algorithm (k = 200) to a training set with
at least a few hundred thousand observations of consecutive years. �e red - yellow - green scale is used for low
medium - high probabilities.
�e condition log(LQ)t > 0 arises as the main determinant for whether log(LQ)t+1 > 0. However, we can also
see the role played by the sizes of the observed values: the transition pLQ = 0 to pLQ = 1 becomes narrower
as the sizes of the involved observations increase.
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and products with the same level of LQ < 1, the ones of smaller size have higher chances of

achieving LQ > 1 the following year. �is analysis therefore serves to probe how country-

products (region-technologies) of equal LQ and di�erent sizes may imply di�erent situations

regarding their possibility to surpass the LQ = 1 threshold. It can be used to decide how LQ

values are not comparable across countries or products.

To have an impression of the relevance of these e�ects, from the trade dataset, an LQ =

0.5 (log(LQ) ≈ −0.3) for a product of average size this LQ means more than 15% chance of

ge�ing to LQ > 1 for small economies, a 5% chance for mid-sized countries, and between 1%

and 2% for large economies.

�e level curves of pLQ are important as an a-posteriori estimation of starting points

equally distant to the LQ = 1 threshold. As such they o�er a path for controlling size e�ects

on the LQ metric. Additionally, using them as border between categories allows mapping the

observations to intervals of qualitative intensity which controls by entities’ sizes.

Studies that use levels of LQ 6= 1 without acknowledging size e�ects need to be revised

following these observations. Levels of pLQ can be taken as levels of LQ corrected by size

e�ects. In section 4.4.4 I test the persistence of pLQ levels by means of a Markovian transitions

analysis to �nd that pLQ levels near 0, 1 are stable and that the jump 0 → 1 (and viceversa)

usually involves stepping on intermediate values.

4.4.4 Dynamics

Figure 4.7 plots pLQt (horizontal axis) vs pLQt+1 (vertical axis). �is can be thought of as

an empirical Markov matrix. Some features are clearly distinguishable. �e extremes of very

low and high pLQ are stable: Most points in there continue to have similar values when time

evolves one step. Very di�erent dynamics characterize the situations of intermediate pLQ lev-

els. Volatility of pLQ is higher and there are signi�cant chances of having any pLQ at the end

of the period.

If we partition pLQ in three categories:
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Figure 4.7: Plot of an empirical Markov matrix: pLQ next year as a function of pLQ this year. Both extremes
show persistence, while the values in the middle show a high volatility. �is result suggests a split of the range in
three categories and here I choose the thresholds .2 and .8 for illustration. �e percentages (sum 100% vertically)
indicate transition probabilities from categories at time t to those at time t+1. �ey suggest that points are likely
to transit the middle category to jump between the extremes.

1 low values (0 < pLQ < 0.25)

2 medium or transition values (0.25 < pLQ < 0.75)

3 high values (0.75 < pLQ < 1)

then we can compute the 3 × 3 Markov matrix and we see a further interesting feature

(numbers annotated on the blocks of matrix, Figure 4.7). �ere is signi�cant probability to

jump between categories 1 and 2, as well as between categories 2 and 3. However the prob-

abilities of direct jumps between categories 1 and 3 without passing through 2 are reduced.

Is this possibly revealing an ordering in LQ values? In the sense that the transition category,

which maps to a region of the (LQ, size factors) plane, seems to be a stage that country-products

typically go through in their dri� from no-advantage to advantage status, and viceversa.

Studies that use LQ > 1 for de�ning a binary matrix and corresponding bipartite network,

can use pLQ for a weighted bipartite network. Also, from this Markov analysis we con�rm

that pLQ levels allow to de�ne categorical {low, mid, high} values in place of the binary {0,

1}. �is is discussed in section 4.4.5.
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4.4.5 pLQ as continuous generalization of LQ > 1

�e LQ > 1 binary variable is usually taken as a proxy for telling which entries in the con-

tingency table are signi�cant. �e variable pLQ has (by de�nition) a value between zero and

one, and each country-product pair is assigned one. We have seen that it matches the binary

0, 1 in most cases, but takes intermediate values when LQ ≈ 1 (see �g 4.3)

If the variable LQ > 1 is arranged in a rectangular matrix M ∈ RnC×nP , where columns

correspond to the nP products and rows correspond to the nC countries, it can be interpreted

as the adjacency matrix of a bipartite network (as in Hidalgo et al. (2007)). Such bipartite

network is undirected and its two sets of nodes are ’countries’ and ’products’. If we replace

LQ > 1 for pLQ, the only di�erence is that possible values are not only 0, 1, but all those in

the interval [0, 1] and hence it should instead be interpreted as a weighted binary matrix. �e

analysis based on binary bipartite networks as in Hidalgo et al. (2007) can be easily adapted to

this more general case.

We can use this consistent criteria for turning the binary LQ variable into a categorical.

�is is illustrated in Figure 4.8, which plots the matrix Mcp (where rows represent countries

and columns represent products) both in a binary fashion and in categorical.

Estimates of pLQ by integrating growth distributions

So far pLQ has been estimated from a nearest neighbors (knn) approach. Next, in section

4.4.5 I show that it matches estimation by assuming independent growth distributions of x1 =

log(scp), x2 = log (ScSp/SW ), estimating them and integrating them numerically to �nd the

chances Prob(LQt+1 > 1|x1, x2). In this way we have elements to qualitatively explain the

pa�erns of size e�ects observed.

�ere are formal ways to model the outcomes observed from knn regressors. By charac-

terizing the typical �uctuations of observed points one can compute the chances that they are

above log(LQ) = 0 a�er a time period.

As was done in section 4.4.2 I �rst present the se�ing in one dimension, using the variable

log(LQ) before extending the discussion to the general 2 dimensions of the log(LQ) system.
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Figure 4.8: Matrix plot demonstrating the result of including an intermediate category in the binary country-
product matrix Mcp of year 2014. Columns represent products, rows represent countries, ordered by ubiquity
and diversity respectively. LQ = 0 (1) is represented in white (black) and values in the transition category of pLQ
are in yellow.

We will consider di�erences in log levels. A condition for satisfactory results of the tech-

nique we will use is that the distribution of such di�erences has a nearly continuous support.

More concretely: in the case of patent data, a major part of observations are below ncp = 10

(�g 4.1, 4.2) and log di�erences among these levels are constrained to very few values strongly

in�uenced by the levels of the �rst few natural numbers. Trade data has much higher values

(minimum of 103) an so it is perfectly suited to the analysis of this section.

�e de�nition of pLQ as the probability that log(LQ) > 0 within a time period links it

directly with the growth distributions of log(LQ) (or for the same ma�er, those of LQ). To see

this: if we determine that a�er a time period the points in the neighborhood of LQ0 present

a shi� ∆ log(LQ) = log(LQ) − log(LQ0) distributed according to the probability density

function:

g0(∆ log(LQ))

�en the condition log(LQ)t+1 > 0 will be ful�lled if:

log(LQ)t + ∆log(LQ) > 0 ⇐⇒ ∆log(LQ) > −log(LQ)t
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so that for estimating pLQ we need to sum all the chances that ∆ log(LQ) is larger than

the gap −log(LQ)t from log(LQ)t to zero. Formally, this is the following integral:

pLQ(LQ0) =

∞∫
−log(LQ0)

g0(∆ log(LQ)) d log(LQ) (4.7)

�is is illustrated in Figure 4.9.

Figure 4.9: Growth distribution of log(LQ) and pLQ in empirical and analytical form. Top: probabilities that
LQ > 1 in the next period as a function of log(LQ). �is is the same plot of Figure 4.3 but in a thinner horizontal
range. �e variable T is aggregated out for illustration purposes. Bo�om: the histogram shows where all points
of the vicinity of log(LQ) = −0.1 ended up in the following period. �is histogram is an empirical version of the
growth distribution gp0 . Highlighted are those points which surpassed the log(LQ) = 0 threshold. �eir area is
equal to the height of the corresponding dot in the plot above, and it corresponds to the integral in equation 4.7.

�is is how integration of growth distributions should work as estimation of pLQ. Now

we can extend the reasoning to the pair of variables x1 = log(scp), x2 = log (ScSp/SW )

that fully describe the 2D space for the LQ problem. Denote points in this coordinates as

x = (x2, x1), denote G0(∆x2,∆x1) as the two dimensional distribution of growth rates of

these coordinates, and denote (x1 > x2) as the two dimensional region of the plane (R) where

log(scp) > log (ScSp/SW ) ⇒ scp > ScSp/SW , i.e. LQ > 1. �e cases of growth resulting in

LQ > 1 condition are, in calculus notation:

pLQ(x0) =

∫∫
R

G0(∆x2,∆x1) (x1 > x2) dR (4.8)

�is integration would be approximated numerically if we had the 2D distribution of
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growth out of the x coordinates stored in an array G and the condition x1 > x2 stored in

another array C of the same shape and relating to the same (large enough) rectangular re-

gion. In this notation the numerical integration in equation 4.8 can simply be:9

pLQ(x0) = (G * C).sum() / G.sum() (4.9)

�e particular approach I choose for estimating this is to assume the growth rate distri-

bution to be separable, i.e. express it as product of two one dimensional marginal growth

distributions: G0(∆x2,∆x1) = gx2(∆x2)gx1(∆x1) and integrate it numerically in the x1 > x2

region.

Here it is key to observe that the typical width of log level �uctuation decays with in-

creasing size. �is applies both to the actual x1 = log(scp) values and to the size factor

x2 = log(Sc) + log(Sp) + log(SW ) (Figure 4.10). �is observation is in line with the results in

H. R. Stanley et al. (1996) and other studies looking into volatility decay with agent size.

Figure 4.10: Volatility versus size. Larger observations �uctuate less and as such they are less likely to traverse
a given gap in LQ levels. �e standard deviation in these plots is the width of the axis of ellipses in �gures 4.11
and 4.12.

For the problem of location quotients, the decay of volatility with size implies that large

observations and observations from large countries and products are less volatile. �is single

qualitative feature results on (eg.) less likelihood for a large observation s1 to surpass LQ = 1,

compared to a smaller observation s2, considering they start at the same LQ < 1 level.

�e plots of Figure 4.11 illustrate the model of uncorrelated growth rates in the variables

x1 = log(scp) and x2 = log(ScSp/SW ). �e ellipses show the standard deviation of these vari-

ables. We can qualitatively explain changes in the transition width of pLQ as a consequence
9Python language. Arrays are numpy arrays. Product * is element wise and .sum() is the sum of all

array elements.
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of the dependence of the moments std(x1) and std(x2) with x1, x2.

Figure 4.11: Magnitude of growth rates (ellipses) and level curves of numerically integrated pLQ as in eq. 4.8. Le�:
plot in coordinates ((x1+x2)/2, log(LQ) = x1−x2). Right: plot in coordinates (x2, x1). Growth rate distribution
is modelled as independent product of marginal growth rates in coordinates (x2, x1), i.e. G0(∆x2,∆x1) =
gx2

(∆x2)gx1
(∆x1). Widths of ∆x1, ∆x2 decay monotonously with x1, x2 and result in narrower transition

pLQ = 0 to pLQ = 1 for larger entities.

For the numerical integration of these 2D growth rate probabilities I apply the following

procedure. I bin observations into intervals which have bin centers {x1}. Comparing ob-

servations at consecutive time periods, for each of these bins we can observe histograms of

∆x1. �ese histograms, normalized by the bin population serve as estimate of an assumed

gx1(∆x1). From these I create a 2 dimensional continuous interpolator gx1(∆x1) that will tell

the chances of any x1 to become x1 + ∆x1 a�er one time period. �e procedure is applied on

the x2 variable as well, and we �nally estimate G0 as gx2gx1for chances of jumping in the 2D

LQ plane.

�e numerical integration is performed by evaluating growth rates interpolators in a �ne

grid covering a large rectangle about point x = (x2, x1) and storing it in a 2D numpy array

G . �en, the condition x1 > x2 is stored in another array C of the same shape and relating

to the same rectangular region. �e numerical integration in eq. 4.8 is performed simply by

computing (G * C).sum() / G.sum() as in eq. 4.9.

In Figure 4.11 I show the level curves of the pLQ from integration of growth rates, together

with indicators of the width of changes in x1, x2 in ellipses.

To conclude on the validity of this model for reconstructing pLQ, I compare with level
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Figure 4.12: Direct comparison of level curves of pLQ estimated from knn algorithm (colors) and from integrated
growth rates (black) (eq. 4.8). Le�: plot in coordinates ((x1 + x2)/2, log(LQ) = x1 − x2). Right: plot in
coordinates (x2, x1). We �nd a qualitative match, con�rming that size e�ects of LQ can be explained by the
monotonous dependence of std(∆x1), std(∆x2) with x1, x2.

curves of pLQ from the knn estimator. From this we can observe that there is a qualitative

match in the pa�erns of widening of the e�ective LQ metric with decreasing x1, x2 values. On

the transition x1 = x2 = (x1 + x2)/2 and size e�ects can be evaluated by measuring std(x1)

and std(x2) along this line.

4.5 Conclusion

In certain empirical contexts where a total can be disaggregated by two independent sets of

categories (c, p), the location quotient (LQ) arises as a natural metric that compares the ob-

served magnitudes (scp) relative to the expectation from independent marginal probability of

its categories (Sc, Sp).

�is paper studies to what extent the values of LQ indices from di�erent observations (c, p)

can be compared to each other.

To deal with this problem, we �rst suggest to work with the log transformation of LQ and

express it as the di�erence log(LQ) = log(scp)−log(ScSp/SW ), where SW is the dataset total.

�is constrain involving three variables implies that all possible con�gurations of the problem

are fully determined by knowing two (independent combinations) of these variables.

Secondly, I propose to use the observed probabilities that LQt+1 > 1, conditional on the
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state at time t (log(LQt), log(scpt)) as e�ective measures of distance of LQt to the LQ = 1

threshold. �erefore, possibly di�erent LQ values from two observations are considered

equivalent if given their log(scpt) magnitudes (alternatively given their log(ScSp/SW ) magni-

tudes) they show the same chances that LQt+1 > 1. I name this variable as probabilistic LQ

(pLQ).

For estimating pLQ I o�er two alternative methods. Fi�ing a k nearest neighbors model,

and using estimations of the growth rates of log(s) and log(ScSp/SW ). �e �rst one is recom-

mended for the goal of estimating level curves of pLQ and from there transforming to categor-

ical levels. �e second method is o�ered as a feasible explanation for the pa�erns observed in

the level curves of pLQ.

�e usefulness of the approach we present are multiple. On the formal side it allows mea-

surements of such distortions, or size e�ects, that have otherwise been elusive. On the practical

side, level curves of pLQ suggest e�ectively equivalent distance to LQ = 1, and allow conver-

sion to consistent categorical LQ classes (eg. low LQ, intermediate LQ, high LQ). By applying

this logic we can translate LQ measurements computed from di�erent entities into a single

consistent scale, countering size e�ects in a controlled way. Indeed there are multiple pub-

lished results which use LQ as dependent or independent variable in regressions without con-

trolling for size e�ects. We o�er insights for a�empting their revision. Eventually, exploiting

our approach LQ values computed at di�erent points in time or from di�erent datasets can as

well be cast into a single universal scale. �is paper hopes to bring about easier comparability

of published research by having o�ered formal tools to approach concerns on the nature of

location quotient indices.

4.6 Appendix: pLQ regressor

�e following few lines can be used to compute the pLQ probabilities in customized se�ings.

import pandas as pd

from sklearn import neighbors

def pLQ_regressor(df, n):

"""Estimate a pLQ regressor
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Arguments:

df -- (pandas dataframe)

Input data. must contain columns for:

- The log observed values at t (’log_s’)

- The log size factor Sc Sp / Sw at t (’log_size_factor’)

- Whether LQ > 1 at t + 1 (’LQ_t+1’)

n -- number of neighbors

"""

# Prepare X, y data for knn

M = df[[’log_s’,’log_size_factor’,’LQ_t+1’]].as_matrix()

X, y = M[:,:2], M[:, 2]

# Fit

knn = neighbors.KNeighborsRegressor(n_neighbors = n, weights = ’uniform

’).fit(X, y)

return knn

And it is used as in the following example:

# Load the data as pandas DataFrame

df = pd.read_csv(’./data.csv’)

# Fit the regressor

knn = pLQ_regressor(df)

# Ask pLQ at a point i

pLQ_i = knn.predict([log_s_i, log_size_factor_i])
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Chapter 5

Related variety, economic complexity

and the product space

1

1�is chapter is being prepared for submission as F. Ne�e, A. van Dam, C. Bo�ai, M. Iglesias, S. Orazbayeb,
R. Hausmann and K. Frenken. �e concept of diversity in economic geography: related variety, economic com-
plexity and the product space.
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Abstract

�e last ��een years have witnessed a renewed interest in the role of diversity in local economies.

Here, we discuss three contributions to this literature: the notion of related and unrelated vari-

ety, economic complexity and the path dependent diversi�cation pa�erns described in the work

on product and industry spaces. Although these three di�erent lines of research share many com-

monalities, we describe how they di�er fundamentally in some of their ontological starting points.

Moreover, we argue that there is substantial distance between some of the conceptual considera-

tions in these approaches and their empirical implementation. Finally, building on work in ecol-

ogy, we describe how to quantify and decompose diversity into three components: the variety of

industries in a city, the balance of employment across these industries and the disparity among

them. Armed with these tools, we show how more or less equally defensible modeling approaches

yield di�erent answers to the main hypotheses put forward in the research on diversity, diversi�-

cation and growth in US cities.

5.1 Introduction

One of the most remarkable features of successful cities is the myriad ways in which their

inhabitants can earn a living. To some urbanists like Jane Jacobs, their diversity is precisely

the de�ning quality of cities. �is economic diversi�cation is both an outcome of and a pre-

requisite for urban growth: cities grow by diversifying their economies at the same time that

a diversi�ed economy allows cities to grow more productive and innovate. Recently, this rela-

tion between economic growth and diversi�cation has been scrutinized in two connected, yet

distinct bodies of research: Evolutionary Economic Geography (EEG) and Complexity Eco-

nomics. In this paper, we discuss the treatment of economic diversity in these two strands of

research. We focus our discussion on three concepts: related variety, economic complexity and

industrial relatedness. First, we argue that the relation between these concepts and economic

diversity is less straightforward than it may seem. Second, we highlight some important, yet

o�en overlooked di�erences in ontological convictions on which they are based. Moreover, in
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an application to US cities, we show that there is some distance between the original narratives

underpinning these concepts and their empirical measurement.

�e notion that urban diversity ma�ers �nds widespread support among economic geog-

raphers and urban economists. �e la�er have stressed, for instance, that economic diversity

improves production and consumption in a city, as formalized in “love-of-variety” utility and

production functions (Dixit & Stiglitz, 1977; Krugman, 1991). Accordingly, diversity allows

suppliers to specialize and customize products and services to the needs of speci�c customers

(Duranton & Puga, 2004). A related argument posits that the wide variety of intermediate

products and services o�ered in large and diversi�ed cities lowers the barriers for new �rms

to enter new markets. Accordingly, diversity o�ers relevant building blocks – or capabilities –

required for the successful operation of economic activities that are shared across industries.

Jacobs’ (1969) iconic New York City brazier maker serves as a colorful illustration of this logic.

Others have instead stressed that local diversity a�ords opportunities for learning. Ac-

cordingly, new technologies o�en emerge as new combinations of existing technologies. By

facilitating the sharing of knowledge and ideas across industries, diverse cities spur innovation

through Schumpeterian “new combinations”.2

�e la�er, Schumpeterian, argument was further re�ned by Frenken et al. (2007). �ese

authors stress that learning is most e�ective when the parties involved are at an optimal cog-

nitive distance (Nooteboom et al., 2007). Frenken et al. therefore distinguish between related

and unrelated variety, each of which play di�erent roles in a city.

Like Frenken et al. (2007), Hidalgo and Hausmann (2009) argue that diversity spurs growth.

However, like Jacobs (1969), Hidalgo and Hausmann’s reasoning relies not so much on bene�ts

for learning as for the overall operations of economic activities. �ey argue that di�erent prod-

ucts require di�erent capabilities. What ma�ers for urban growth is therefore not super�cial

industrial diversity, but rather the diversity in capabilities that sustain a city’s industry mix

(see also F. Ne�e et al. (2017) on this distinction), or, as the authors refer to this, a city’s com-

plexity. Industrial diversity is merely an imperfect re�ection of this complexity. Ultimately,
2Jane Jacobs is o�en credited with the notion that diversity in cities facilitates such new combinations. How-

ever, Jacobs’ original argument does not refer to technological spillovers, but is based on the idea that a deeper
division of labor allows �rms to outsource non-critical elements of their production processes, which lowers
entry barriers for new �rms and industries.
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what determines a local economy’s development potential is the fundamental breadth (i.e,

diversity) of capabilities it can mobilize.

Finally, diversity is not only an input into, but also an output of, local economic devel-

opment. �is insight also goes back to Jacobs (1969), who proposed that cities grow by di-

versifying into new activities. More recently, Hidalgo et al. (2007) have provided empirical

corroboration for this conjecture at the level of national economies by showing that the pro-

cess of diversi�cation is not random but follows predictable paths. Countries, regions and

cities tend to diversify into activities that are closely related to the ones they already host,

where relatedness is expressed in product or industry spaces. �e idea of related diversi�ca-

tion has been embraced by evolutionary economic geography, where it was transferred from

a country-level to a region-level phenomenon (F. Ne�e et al., 2011). Since then, processes

of related diversi�cation have been identi�ed across a wide range of contexts (Hidalgo et al.,

2018).

Interestingly, the EEG literature that emerged from Hidalgo et al.’s 2007 pioneering work

seems somewhat agnostic about whether the path dependent nature of related diversi�cation

should be a�ributed to bene�ts in local learning or in local production. However, whereas

Hidalgo et al.’s original contribution emphasized that relatedness and product spaces should

be considered as constraints to the feasibility of growth paths, the subsequent literature has

o�en embraced related diversi�cation as a desirable growth strategy. �is suggests an implicit

embrace of the learning model: if related diversi�cation maximizes knowledge spillovers, such

diversi�cation paths would not just be more feasible, but also dynamically e�cient.

A complication in both lines of research is that, in spite of its appearance, diversity is

not a monolithic concept. First, there is the aforementioned di�erence between super�cial

diversity in industries and the more substantive diversity in underlying capabilities. Economic

complexity a�empts to capture this la�er fundamental diversity in its economic complexity

index (ECI). However, recent work has cast doubt on whether the ECI can indeed be interpreted

as a diversity measure. Second, diversity alludes to the notion that there are some primitive

objects that are fundamentally distinct from one another. For instance, manufacturing cars is

obviously di�erent from running a restaurant. However, things are not always as easy. For

instance, are fast-food chains and family restaurants di�erent activities? Or are they di�erent
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instances of the same activity? As de�nitions of economic activities become more �ne-grained,

it becomes harder to decide which activities are fundamentally di�erent.3 �ird, there are at

least three aspects to diversity. Diversity depends on (1) the number of distinct activities in a

city, (2) how spread out employment or output is across these activities and (3) how dissimilar

these activities are to one another (Stirling, 2007).

We will discuss all of these issues in greater detail. Our aim is to highlight the common-

alities and di�erences in philosophical starting points that underlie related variety on the one

hand and economic complexity and the product space on the other hand. �ese di�erences

mirror the di�erences in intellectual antecedents: whereas the literature on related variety is

�rmly grounded in innovation theory, economic complexity and the product space emerged

from combining trade theory with concepts of complex networks and combinatorial growth

found in the complexity sciences. Furthermore, we discuss how the di�erent conceptual start-

ing points lead to di�erent measurement strategies. To bridge the two frameworks, we build

on a decomposition of diversity that separates the aforementioned aspects of diversity: the

variety of di�erent industries in a city, the balance of employment distribution across these

industries and the disparity or (un)relatedness of the city’s industries.

We illustrate our argument with data on US cities. �e goal of this exercise is modest. We

do not aim to provide de�nitive answers to the question of what role diversity plays in the

growth and development of these cities. Instead, we use these data to explore how di�erent

empirical strategies yield di�erent conclusions on the same core hypotheses put forward in

prior literature.

�e main lessons from our analysis are:

1. Related variety and economic complexity are based on fundamentally di�erent beliefs

about why diversity ma�ers.

2. Economic complexity is no measure of generalized diversity and will only reveal an

economy’s complexity under speci�c circumstances.

3. �e e�ects of related variety are sensitive to ad hoc empirical choices.
3Note that this aggregation problem is precisely what the measurement of relatedness aims to overcome:

relatedness captures the how distinct di�erent activities are.
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4. Path dependent related diversi�cation may not re�ect the e�ects of a large diversity, but

of a large mass of related activities.

In the remainder of the paper, we will elaborate on these lessons. We start by introducing

the concepts of related variety, economic complexity and the industry space, paying special

a�ention to the implicit stances they take on diversity. In Section 5.3 we describe the empirical

implementation of these concepts. Next, we introduce the data and discuss our empirical

exercise in 5.4. Finally, as a companion to this paper, we provide structured Python Notebooks

that allow easy replication of our analyses. Our hope is that, by providing transparent access to

the measures and calculations in this paper, we allow others to test hypotheses across datasets

and applications and hopefully arrive at a scienti�c consensus about what roles diversity plays

in local economic development.

5.2 �e role of diversity in local economies

In both evolutionary economic geography and complexity economics, scholars have studied

the role of diversity in local economic development. However both strands of the literature

have done so using di�erent concepts and empirical tools.

5.2.1 Related Variety

Economic geographers have long recognized that cities bene�t from having a diversi�ed econ-

omy. Since Glaeser et al. (1992), these bene�ts are known as Jacobs’ externalities. Frenken et al.

(2007), however, argue that regional diversity a�ects economic development in more than one

way. First, a greater variety of economic activities in a city facilitates knowledge spillovers be-

tween industries. Second, like diversi�ed �nancial portfolios lower investment risks, regional

diversity reduces a city’s exposure to idiosyncratic demand or supply shocks.

�e main insight of Frenken and his colleagues is that these two e�ects build on di�erent

types of diversity. Whereas spillovers associated with Jacobs’ externalities are most likely to

materialize between “complementary sectors” Frenken et al., 2007, p. 686, risk diversi�cation

is maximized when industries di�er in their exposure to market forces. �erefore, it is not
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just the variety of industries that a region hosts that ma�ers, but also the extent to which

these industries are related to one another. Unrelated variety reduces the region’s exposure to

adverse shocks, which should translate into less unemployment. Related variety instead bene-

�ts a local economy through the inter-industry learning associated with Jacobs’ externalities.

However, learning is most fruitful when it happens at an optimal cognitive distance (Noote-

boom et al., 2007): to learn from one another, economic actors should neither be too similar

nor too di�erent from one another. By facilitating Schumpeter’s “new combinations”, related

variety should therefore spur innovation and accelerate productivity growth.

5.2.2 Economic Complexity

Scholars in complexity economics have put forward di�erent metrics of diversity to capture

an economy’s latent growth potential. �e earliest metric was the Economic Complexity In-

dex, introduced by Hidalgo and Hausmann (2009) as a measure of an economy’s complexity.

It builds on Hausmann and Klinger (2007) insight that “what [a country] export[s] ma�ers.”

Accordingly, rich countries are rich because they produce products that require a broad capa-

bility base. Because the full list of factors that could count as capabilities is unknown – ranging

from physical infrastructure and an educated labor force to e�cient institutional arrange-

ments and a capable state – identifying the precise capability requirements for each product

is nigh impossible. �erefore, Hausmann and colleagues instead propose to infer the implicit

productivity a product requires from the kind of countries that are able to export it. If only

high-productivity countries – proxied as countries with high per-capita incomes – manage

to export a product, the product is likely to require complex capabilities. �e authors thus

de�ne a product’s implicit productivity requirement, PRODY, as the average per-capita Gross

Domestic Product (GDP) of countries that export the product. Next, the implicit productivity

of country c, EXPYc, can be calculated as the (export-value weighted) average productivity

implied by the products it exports. �is implicit productivity proves to predict a country’s

future income growth remarkably well.

�e so-called method of re�ections Hidalgo and Hausmann (2009) generalizes this notion

of “implicit productivity” by ranking the complexity of products and countries without re-

quiring information on countries’ per-capita incomes. Instead, it de�nes the complexity of
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a country (the Economic Complexity Index, or ECI) and the sophistication of a product (the

Product Complexity Index, or PCI) iteratively. In each iteration, the ECI of a country is the

average of the (previous iteration’s) PCI of all products that the country produces. Similarly,

the PCI of a product is the average ECI of all countries that produce the product, where “pro-

ducing” refers to exporting a product with revealed comparative advantage. As the iteration

progresses, it updates its guesses of industry and country complexities. To seed the iterations

Hidalgo and Hausmann use the number of products that a country produces as an initial guess

of its complexity and the number of countries that are able to produce a product as the initial

guess of the product’s lack of sophistication (complexity). Iteratively updating these initial

guesses yields an ECI for each country and a PCI for each product.

�e authors interpret these indices as measures of the number of capabilities that a country

has or that a product requires. �at is, the ECI is supposed to re�ect a fundamental, capability-

based notion of diversity.

In later work, Hausmann and Hidalgo (2011) and Caldarelli et al. (2012) discovered that the

method of re�ections simpli�es to an eigenanalysis, in which the ECI and PCI can be expressed

as eigenvectors. However, this same insight ultimately cast doubt on the interpretation of

the ECI and PCI as measures of capability endowments and capability requirements. Mealy

et al. (2019) and Gomez-Lievano (2018) describe the close relation between ECI and spectral

clustering:4 the ECI splits countries into two groups such that the export baskets of countries

in one group are similar to one another and di�erent to those of countries in the other group.

�e close relation between ECI and graph partitioning helps explain a number of known co-

nundrums. First, the direction of the ranking of the ECI is undetermined: it can rank countries

in ascending or descending order of complexity. Consequently, researchers need to determine

the right direction in an ad hoc way.5 �e reason is now clear: because the ECI and PCI are

eigenvectors, their sign is undetermined. Second, Hidalgo and Hausmann (2009) claim that

the ECI is a generalized measure of diversity has been questioned by Tacchella et al. (2012)
4In fact, the method of re�ections is exactly equivalent to an ordination in Ecology called ‘reciprocal averag-

ing’ (Hill, 1973), which is in turn equivalent to the method of Correspondence Analysis, a technique for analyzing
associations in high-dimensional categorical data (Greenacre, 1984). �e complexity indices can thus be seen as
the ‘principal component’ in a dimensionality reduction technique analogous to principal components analysis.

5For instance, the ECI should correlate positively with countries’ GDP per capita, or Germany, Japan and the
U.S. should be ranked as complex economies.
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and Kemp-Benedict (2014). �e la�er showed that the ECI is in fact orthogonal to a country’s

export diversity.6 �ird and �nally, the rankings produced by the ECI and, in particular, by the

PCI can be strikingly counterintuitive. We will show some examples of this in Section 5.4.3.

5.2.3 �e Product Space

Like the ECI, Hidalgo et al.’s (2007) product space builds on the notion that products di�er in

their underlying capability requirements. However, instead of trying to assess how many dif-

ferent capabilities one product requires, the product space a�empts to measure to what extent

two products share the same capability requirements. Once again, measurement is indirect:

Hausmann and Klinger (2006) and later Hidalgo and co-authors posit that two products re-

quire similar capabilities if they are o�en co-exported by the same countries. By counting

co-occurrences of products in countries’ export baskets, the authors build a network that con-

nects co-exported products. �is network is referred to as the Product Space.

�e product space has been shown to map a country’s likely diversi�cation paths. To

predict future diversi�cation, Hidalgo et al. (2007) create a variable they call “density”. Den-

sity measures the proximity of a product to a country’s overall export basket. �e higher a

product’s density, the more likely it is that the country will start exporting it. �is empirical

regularity has been replicated across various data sets and contexts and was dubbed the Prin-

ciple of Relatedness by Hidalgo et al. (2018). In Section 5.3.3, we will see that this density is,

in fact, a measure of the variety of related products.

5.3 Measurement

�e research reviewed above has yielded three quantities of interest: related variety, economic

complexity and inter-industry proximity or relatedness. Below, we describe how each of these

quantities can be measured. Herein, we stay close to the original papers, while simplifying

some elements.
6Note that diversity is here measured as the number of products that are exported with revealed comparative

advantage.
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5.3.1 Related variety

Related variety as de�ned by Frenken et al. (2007) is based on the entropy of a city’s employ-

ment distribution across industries. For a given city, the entropy is given by

S(pc) = −
∑
i∈I

pic log pic, (5.1)

where pc is the vector of employment shares pic = Eic
E.c

of industry i in city c (the “.” in E.c
indicates a summation over the omi�ed category, in this case industries).

A city has maximum entropy if all of its industries are equally large. In this case S(pc) =

logNc, where Nc is the number of industries with nonzero employment share in city c. If all

employment is concentrated in a single industry, S(pc) reaches its minimum of S(pc) = 0.

If industries belong to broader sectors σ ∈ Σ, entropy can be decomposed into two com-

ponents:

S(pc) = −pσc
∑
σ∈Σ

log pσc −
∑
σ∈Σ

pσc
∑
i∈σ

pic
pσc

log
pic
pσc

(5.2)

= UVc + RVc, (5.3)

where pσc = Eσc
E.c

is the sectoral employment share in city c.

�e �rst term is the city’s sectoral employment entropy. It measures how equally spread

out a city’s employment is across sectors. Frenken et al. (2007) refer to this term as the city’s

unrelated variety. �e second term is the city’s related variety: a weighted average of industry-

level employment entropies within each sector, where weights represent a sector’s employ-

ment share. Related and unrelated variety thus quantify a city’s degree of diversi�cation at

two di�erent levels of aggregation: across sectors, and across industries within sectors.

5.3.2 Economic Complexity

To calculate the ECI and PCI, we �rst need to determine the activity mix of a local economy.

�at is, we need to decide whether or not an industry has a substantial presence in a city. To
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do so, we calculate a quantity known in economic geography as the location quotient (LQ).7

Let Eic be the employment of an industry i in a city c and omi�ed indices mark a summation

over the corresponding dimension. We say that industry i is present in city c, whenever the

industry is overrepresented in the city:

Pic =

1 if Eic/Ei.
E.c/E..

> 1

0 elsewhere
(5.4)

We collect the industry mixes of all cities in the matrix P . �e entries of this matrix consist

of zeros and ones, Pic ∈ {0, 1}, that mark which industries (listed in rows) are present in which

cities (listed in columns). Next, we calculate the ECI of each city and the PCI of each industry

using the eigenvector implementation of the method of re�ections. For details, we refer to

Hausmann and Hidalgo (2011). A step-by-step description with embedded Python code is

provided in the companion Jupyter Notebook.

5.3.3 Product Space

Inter-industry relatedness can be measured in a variety of ways (see, for instance, F. Ne�e and

Henning (2013) for an overview). In what follows, we largely follow the approach in Hidalgo

et al. (2007). �at is, we infer the relatedness between industries from how o�en industry i

and i′ co-occur in the same cities:

Cii′ =
∑
c∈C

PicPi′c (5.5)

where C represents the set of cities in the dataset. �e number Cii′ is simply a count of the

number of times that i and i′ are present in the same city. �e proximity of activity i to i′, φii′ ,

is now de�ned as:8
7When applied to export volumes, this quantity is known as revealed comparative advantage (RCA) in the

trade literature.
8Note that this measure is similar to the one proposed by Hidalgo et al. (2007), but, unlike their metric, φii′ is

symmetric. Given that co-occurrences are undirected, we see no advantage in arti�cially creating asymmetries
in this measure.
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φii′ =


Cii′/C.i′
Ci./C..

if i 6= i′

0 if i = i′
(5.6)

�at is, to calculate proximity, we compare how o�en i co-occurs with industry i′ to a

benchmark that tells us how o�en we would have expected them to co-occur, had the industries

been randomly distributed across cities.9 Furthermore, we set the proximity of industry i to

itself equal to zero. �is will allow us to separate the e�ect of the presence of related industries

from the e�ect of the industry’s own presence in a city. Given that the metric de�ned in eq. (5.6)

tends to have a highly skewed distribution, we map φii′ onto the interval [0, 1) using:10

φ̃ii′ =
φii′

φii′ + 1
. (5.7)

φ̃ii′ de�nes a network of related industries, the industry space.11 We can use φ̃ii′ to calculate

how close an industry is to a city’s entire portfolio of industries. Following Hidalgo et al. (2007),

we call this measure an industry’s density in the city:

Di
c =

∑
i′ 6=i

φ̃ii′

φ̃i.
Pi′c (5.8)

where the sum is taken over all industries in the classi�cation system, excluding industry i

itself. Di
c counts the weighted number of di�erent industries with LQ > 1 in city c relevant

to industry i. �e superscript i signals that the weights re�ect how related each industry is to

industry i.

In the empirical section, we will also introduce a close cousin of density, namely the mass

of industries in city c relative to industry i:

Ei
c =

∑
i′ 6=i

φ̃ii′

φ̃i.
Ei′c. (5.9)

9Note that this normalization is essentially the same as in the LQ.
10For a detailed justi�cation of this approach, see F. M. Ne�e et al. (2017). An alternative, information-theory

based normalization is proposed in van Dam et al. (2020).
11To increase visual clarity, we will require minimum thresholds for these edges when drawing the networks

– but not when calculating densities – using the method laid out in M. Coscia and Ne�e (2017).
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Whereas density represents a proximity-weighted count of industries in a city – and is

therewith essentially a measure of industrial variety – mass represents the proximity-weighted

size of all industries. �e di�erence is that, for mass, the variety of industries is unimpor-

tant: all related industries are perfect substitutes for one another, whether employment is

distributed across many or few (equally related) industries.

In Section 5.4.3, we will use several alternative relatedness measures, all but one of which

follow the same measurement approach. First, we estimate the proximity between cities, φ̃cc′ ,

to produce a city space that expresses how similar cities are in terms of their industry mix:

φcc′ =


Ccc′/C.c′
Cc./C..

if c 6= c′

0 if c = c′
(5.10)

Second, we estimate an occupation space, φoo′ by looking at how o�en two occupations

co-occur in the same cities:

φoo′ =


Coo′/C.o′
Co./C..

if o 6= o′

0 if o = o′
(5.11)

In eqs (5.10) and (5.11), Ccc′ and Coo′ are constructed analogously to Cii′ , counting the

number of industries that are co-hosted by cities c and c′ or the number of cities in which

occupations o and o′ co-occur. Furthermore, we map φcc′ and φoo′ onto the interval [0, 1) to

yield φ̃cc′ and φ̃oo′ , using the transformation of eq. (5.7).

�ird, we estimate a measure of cognitive proximity between industries:

ψii′ =


Cocc
ii′ /C

occ
.i′

Cocc
i. /C

occ
..

if i 6= i′

0 if i = i′
(5.12)

where Cocc
ii′ counts the number of occupations that are simultaneously present in industry i

and i′, using the de�nition of “presence” of eq. (5.4). Once again, we map this metric onto the

interval [0, 1), using the transformation in eq. (5.7).

Fourth, we calculate the relatedness, or similarity, of two industries’ growth pa�erns as
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the correlation between the industries’ growth rates:12

ρii′ =

corr
(
Eit+1

Eict
,
Ei′t+1

Ei′t

)
if i 6= i′

0 if i = i′
(5.13)

�is metric captures the extent to which industries are exposed to correlated economic

shocks. �e higher the correlations in industrial growth rates in a city are, the less well the

city managed to diversify its portfolio risks.

5.3.4 Decomposing diversity: variety, balance and disparity

All three concepts discussed above, related variety, economic complexity and the product

space pertain to the notion of diversity, but they do so in di�erent ways. To compare these

concepts and their relation to diversity, it will be helpful to explore more carefully what we

actually mean by diversity.

Figure 5.1 shows three cities and their employment distribution.13 In principle, each of

these cities could claim to be equally diverse, as each contains two industries. However, city

B has a more evenly distributed employment across these industries, making it arguably more

diverse as its employment is not dominated by one industry. City C, in turn, has a similar

composition as city B, but hosts industries that are most distinct from one another, making it

more diverse than city B.

Industrial diversity is thus a compound concept that consists of three components (Stirling,

2007):14

1. How many di�erent industries exist in the city? �is is known as a city’s industrial

variety.

2. How equally is employment distributed among these industries? �is is known as the

industrial balance in a city.
12We check the signi�cance level of the correlations; if p-valueii′ < 0.05 then ρii′ = 0.
13�e �gure is inspired by Figure 1 in Rafols and Meyer (2010).
14Work on incorporating disparity into measures of diversity measures goes back to the seventies (Rao, 1982).

More recent work applies these ideas in Scientometrics (Rafols & Meyer, 2010) and economics (van Dam, 2019).
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A

B C

Figure 5.1: �ree cities (A, B, and C) with a di�erent employment structure. City A contains two industries of
uneven size. City B contains two equally sized industries. City C also contains two equally sized industries, but
they are more dissimilar than those in A and B.

3. How dissimilar are the industries in a city? �is is known as a city’s industrial disparity.

Using this framework, the distinction between related and unrelated variety can be un-

derstood as an interaction between the combination of (1) and (2) with (3). �at is, related

variety is high in cities with high industrial variety and/or balance, but low industrial dis-

parity, whereas unrelated variety is high in cities with high industrial variety and/or balance,

and high industrial disparity. Similarly, the density metric in Hidalgo et al. (2007) combines

elements of (1) with (3): an industry’s density is high in cities with many di�erent industries

that are strongly related to i.

Generalized diversity and Hill numbers

We will quantify diversity using the notion of Hill numbers (Hill, 1973). Unlike commonly used

diversity indices such as the entropy or the Her�ndahl-Hirschman index (HHI), Hill numbers

express diversity in units of ‘e�ective numbers’ (Jost, 2006). �e e�ective number of industries

in a city is the number of equally large industries that would be needed to obtain the same

diversity as the city under consideration. To be precise, Hill numbers answer the question: If

we wanted to �nd a city with the same diversity, but where all industries are equally large,

how many di�erent industries would that city need? Hence, for an equally sized industries,

the Hill number returns the number of industries in a city. For industries with unequal size,
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the Hill number returns the number of industries in the city, discounted for the inequality in

the industry distribution.

Jost (2006) shows how a number of diversity indices can be transformed into e�ective

numbers. For the Her�ndahl-Hirschman index (HHI) for example, the e�ective number is

given by the reciprocal of the index. To see this, consider how many di�erent, yet equally

large, industries a city would need to a�ain an HHI of 1/A. �e answer is A. In this case,

each of A industries employs a share of pi = 1/A of the city’s population. �e HHI of this

imaginary city is HHI =
∑A

i=1
1
A2 = 1

A
. �erefore, 1

HHI yields a Hill number. Similarly, the

entropy can be converted to e�ective numbers by taking its exponential (Jost, 2006).15

Hill numbers provide a measure of diversity that takes into account variety and balance,

but can be further extended to incorporate disparity. �ese generalized Hill numbers measure

diversity in units that answer the question: How many equally large and maximally distinct

industries would a city need to a�ain the same industrial diversity score as the city at hand?

Let matrix Z represent a measure of industry relatedness. Leinster and Cobbold (2012) shows

that an augmented Hill number of generalized diversity can now be de�ned as:

DZ(pc) = −e
∑
i pic log((Zpc)ic). (5.14)

�is is a measure of diversity that takes into account variety, balance, and disparity, and

can be interpreted in terms of e�ective numbers. When the proximity matrix is the identity

matrix, Z = I , representing a situation where all industries are maximally dissimilar, eq (5.14)

simpli�es to the standard Hill number:

DI(pc) = −e
∑
i pic log(pic).

15�at is, a city’s industrial diversity can be expressed as the exponential of the Shannon entropy:
e−

∑
i pi log(pi), where pi represents the employment share of industry i in the city. For a city with Nc equally

large industries, we then have pi = 1
Nc

, so that e−
∑Nc

i=1
1

Nc
log( 1

Nc
) = Nc.
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Decomposing diversity

�e generalized Hill number of eq. (5.14) can be decomposed into separate components that

measure variety, balance and disparity (van Dam, 2019). �e decomposition is based on the

fact that variety simply counts the number of industries in a city with nonzero employment

share, Nc:

Nc =
∑
i∈I

1(Eic > 0). (5.15)

where 1(.) is an indicator function that evaluates to 1 if its argument is true and 0 otherwise.

Assuming that the standard Hill number is the product of variety and balance, we can then

express balance as

balc =
DI(pc)

Nc

. (5.16)

Likewise, assuming that the generalized Hill numbers is the product of variety, balance and

disparity, we obtain disparity as

dispc =
DZ(pc)

DI(pc)
. (5.17)

�e intuition behind this decomposition is as follows. Balance and disparity are essentially

factors between 0 and 1 that correct variety (the number of di�erent industries found in a city)

for the unevenness of the distribution of employment and the di�erential relatedness between

industries. We can furthermore normalize variety itself such that it lies between 0 and 1 as well,

by dividing variety by the total number of industries in the classi�cation |I|, so normalized

variety is expressed as:

varc =
Nc

|I|
. (5.18)

Relative Hill numbers

So far, we have discussed the aggregate diversity of an entire local economy. However, in the

research on product spaces, the focus is not as much on cities as a whole as on individual

182



industries within a city. �erefore, it is useful to extend the notion of general Hill numbers

such that they relate to the diversity within a city in the neighborhood of a speci�c industry.

We can do so as follows. Imagine standing on a node in the industry space and looking

around at all neighbors. We are interested in the amount of employment observed in each

neighboring node, where we weight related nodes more heavily than unrelated. We can de�ne

a proximity-weighted employment of i′ relative to i as follows:

Ei
i′c =

Zii′∑
i′ 6=i Zii′

Ei′c

Ei
i′c captures an industry’s importance to the focal industry i, assuming that industries

ma�er more the larger and more related they are. �is idea is shown schematically in Figure

5.2. Note, furthermore, that if we sum Ei
i′c across all neighboring industries of i, we get the

quantity of mass as de�ned in eq. (5.9).

Let pii′c be the share of each if i’s neighbor’s relative employment to i, pii′c =
Ei
i′c
Ei.c

. Using

these shares instead of pic in eqs (5.15) to (5.18) yields the amount of generalized diversity

that exists in the immediate neighborhood of industry i. We will call this quantity the relative

Hill number with respect to i. As before, we can decompose this relative diversity into its

constituent components: relative variety, relative balance and relative disparity.

n

j k

l
i
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.4 .8

.8

m

.5

350
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200
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Node Ei′c
Zii′∑
i′ Zii′

Ei
i′c

j 350 .15 52.5
k 50 .3 15
l 250 .3 75

m 200 .18 36
n 150 .07 10.5

Figure 5.2: Schematic section of the industry space containing a focal industry (i) and its neighbors (i′ in general).
�e size of a node indicates the industry’s employment level, given by the number next to it and shown in the
second column of the table. �e edge labels represent the proximity Zii′ between the nodes, leading to the
weights in the third column of the table. �e product of the employment and the weights give the employment
level relative to the focal industry, given in the fourth column of the table. �e diversity relative to the focal
industry is computed based on this relative employment. It consists of the relative variety (here 5), relative
balance (the evenness of the distribution of the proximity weighted employment) and the relative disparity (the
proximity among the neighbors, indicated here by grey dashed lines).
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5.4 Empirical tests

5.4.1 Data

To illustrate the approaches discussed in the previous sections, we use data on US cities. �e

dataset contains information on the industrial composition of the economies of 369 Metropoli-

tan Statistical Areas (MSAs) between 1990 and 2006. It records employment and average wages

for each city-industry pair, as well as the unemployment rate for each city. We limit the

analysis to 278 non-resource based, private-sector industries. Furthermore, We add two ad-

ditional datasets that contain information on employment and wages for all occupation-city

and occupation-industry pairs.16

5.4.2 Related variety

Frenken et al. (2007) test their related variety framework using data on Dutch labor market

areas. Here, we will explore two of their main hypotheses: (a) because related variety fa-

cilitates product innovations through new technological combinations, related variety spurs

employment growth; and (b) because unrelated variety reduces an urban economy’s exposure

to industry-speci�c, idiosyncratic shocks, unrelated variety protects a city against unemploy-

ment.

Frenken et al. (2007) �nd empirical support for both hypotheses. Some later studies repli-

cate these results for di�erent countries, time periods and sectors. Others, however, fail to

corroborate them or report contradictory results (Content & Frenken, 2016).

�is divergence in �ndings may be due to methodological shortcomings in Frenken et

al.’s original study (see also Content and Frenken (2016)). First, it is unclear how related two

industries must be to contribute to related variety instead of to unrelated variety. In Frenken

et al. (2007), this threshold is arbitrarily set to whether or not two industries belong to the

same 2-digit sector.

To illustrate this issue, we explore how the exact delineation between related and unrelated

industries a�ects the estimated association between related or unrelated variety and employ-
16Appendix 5.6 provides details on the original data sources and our data cleaning. Appendix 5.7 contains an

overview of the variables used in this section and their descriptive statistics.
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ment growth. To do so, we estimate Ordinary Least Squares (OLS) regression models of the

following kind:

log
(
EcT

/
Ect

)
= β0 + β1 logEct +Xctβ + εct (5.19)

where Ect is employment in city c in the base year t, and EcT employment in city c in some

later year T . �e term logEct captures mean reversion e�ects, whereas the vectorXct contains

variables that describe an urban economy: its related variety, unrelated variety and size.17

Table 5.1 shows results. �e models in each column di�er by when two industries are con-

sidered related. In column (1), related industries are industries that belong to the same 1/̄digit

sector, in column (2), the industries must belong to the same 2/̄digit sector and in column (3)

to the same 3/̄digit sector. Unrelated variety is thus taken over 1- 2-, and 3-digit sectors, re-

spectively.

Table 5.1: Employment growth in cities. Models di�er by when two industries are considered related: column (1)
same 1/̄digit sector, column (2): same 2/̄digit sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc 0.0845 -0.0155 0.3147***
(0.0701) (0.0814) (0.1082)

UVc -0.6318*** -0.1214 -0.2417***
(0.1721) (0.1077) (0.0928)

lnEc -0.0954*** -0.0791*** -0.0865***
(0.0163) (0.0164) (0.0161)

Intercept 0.4434*** 0.4434*** 0.4434***
(0.0105) (0.0108) (0.0106)

R2 0.32 0.28 0.30
R2 adj. 0.31 0.27 0.29
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Although the exact relatedness cut-o� is arguably an ad hoc choice, it does a�ect our �nd-

ings. Whereas in models (1) and (2), related variety has no statistically signi�cant e�ect on
17One could add further control variables for a city’s human capital, infrastructure and so on. However, such

variables risk being endogenous: they may be a consequence of a city’s industrial diversity. Note that our aim
is not to conclusively determine how diversity a�ects growth, but rather to explore whether arbitrary modeling
choices a�ect our �ndings. We emphatically do not presume that we chose an optimal regression speci�cation.
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Table 5.2: Average wage growth in cities. Models di�er by when two industries are considered related: column (1)
same 1/̄digit sector, column (2): same 2/̄digit sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc 0.0660** 0.0692** 0.2866***
(0.0281) (0.0308) (0.0540)

UVc -0.0487 0.0084 -0.0713
(0.0615) (0.0422) (0.0435)

lnwc -0.1646*** -0.1694*** -0.1841***
(0.0459) (0.0454) (0.0432)

lnEc 0.0164** 0.0189*** 0.0152**
(0.0069) (0.0068) (0.0065)

Intercept 0.5798*** 0.5798*** 0.5798***
(0.0046) (0.0046) (0.0045)

R2 0.10 0.09 0.16
R2 adj. 0.09 0.08 0.15
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 5.3: Unemployment level in cities. Models di�er by when two industries are considered related: column (1)
same 1/̄digit sector, column (2): same 2/̄digit sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc -0.7249*** -0.5645*** -0.4927*
(0.1963) (0.2053) (0.2577)

UVc -1.1732** -1.1563*** -0.9717***
(0.4640) (0.3107) (0.2699)

lnEc 0.9084*** 0.9129*** 0.9120***
(0.0439) (0.0452) (0.0454)

Intercept 8.8857*** 8.8857*** 8.8857***
(0.0222) (0.0220) (0.0222)

R2 0.84 0.85 0.84
R2 adj. 0.84 0.85 0.84
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

employment growth, we �nd a substantial and positive e�ect in model (3). Similarly, the e�ect

of unrelated variety, which is negative in each model, is numerically unstable. Although these

�ndings are roughly in line with Frenken et al. (2007), the dispersion of parameter estimates

is worrisome.

Results are somewhat more robust if we repeat the analysis using two alternative depen-

dent variables in Tables 5.2 and 5.3: growth in average wages and end-of-period unemploy-
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ment levels.18 Wage growth is positively associated with related variety, but not signi�cantly

associated with unrelated variety.19 Unemployment levels, by contrast, are negatively associ-

ated with both related and unrelated variety, but more so with the la�er than with the former.

A second concern about Frenken et al. (2007) approach is that the theoretical considerations

put forward for why related and unrelated variety ma�er implicitly build on two di�erent

notions of relatedness. Whereas the growth bene�ts associated with inter-industry learning

require that relatedness acts as a measure of cognitive proximity, the unemployment-averting

portfolio bene�ts require a measure of similarities in exposure to idiosyncratic shocks. F. M.

Ne�e et al. (2017) �nd that these two concepts of relatedness are, in fact, close to uncorrelated.

Using the generalized Hill numbers of section 5.3.4, we can resolve both issues at once.

First, we can choose any type of relatedness to measure the degree of disparity between a

city’s industries. Second, because disparity enters the generalized Hill number, in principle, as

a continuous variable, there is no hard dichotomy between related and unrelated variety. In-

stead, the related versus unrelated variety hypotheses can be tested using interactions between

continuous variables.

Starting with the la�er, we follow Frenken et al. and use the classi�cation hierarchy to

decide how related two industries are. However, instead of distinguishing between related

and unrelated industries, we de�ne classi�cation-based relatedness as the number of leading

digits two industry codes have in common. If we normalize this relatedness to lie between 0

and 1, for a classi�cation system with four digits, classi�cation-based relatedness can a�ain

one of �ve values: {0, 1
4
, 1

2
, 3

4
, 1}. Consequently, industries in, for instance, the same 3-digit

sector have a relatedness score of 3
4
.

Table 5.4 runs similar OLS regressions to Table 5.1 above. However, instead of related and

unrelated variety, it uses the generalized Hill-number based diversity metric that incorporates

classi�cation-based relatedness into its disparity component. Column (1) shows that gener-

alized diversity displays a statistically signi�cant and positive association with employment

growth. When we decompose this generalized diversity in columns (2)–(5), we �nd that this
18Frenken et al. (2007) studied the e�ect on unemployment growth. However, unemployment rates essentially

follow the business cycle. Changes in unemployment rates between 1990 and 2006 therefore are mostly driven
by how far these years are from the closest troughs and peaks in the local business cycle and do not capture some
characteristic city-speci�c unemployment dynamic.

19To capture mean-reversion e�ects, these analyses also control for the wage level in 1990.
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association is mostly driven by the disparity between, and, to a lesser extent, the balance in

the employment distribution across, a city’s industries.

Table 5.4: Employment growth in cities (classi�cation-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) 0.3042***
(0.0738)

ln varc -0.1684 0.1167 0.3218***
(0.1122) (0.0829) (0.1009)

ln balc 0.0492 0.3272*** 0.1295
(0.0829) (0.1011) (0.1227)

ln dispc 0.1881*** 0.3358*** 0.0493 0.2425***
(0.0673) (0.0694) (0.0676) (0.0695)

ln varc × ln dispc -0.2996***
(0.0850)

ln balc × ln dispc 0.2795**
(0.1400)

lnEc -0.1627*** -0.0434 -0.0911*** -0.0885*** -0.1055*** -0.1638*** -0.0795***
(0.0234) (0.0292) (0.0106) (0.0087) (0.0245) (0.0281) (0.0093)

Intercept 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4322*** 0.4486***
(0.0105) (0.0107) (0.0108) (0.0105) (0.0103) (0.0107) (0.0111)

R2 0.32 0.28 0.27 0.31 0.34 0.36 0.34
R2 adj. 0.31 0.28 0.27 0.31 0.33 0.35 0.33
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Columns (6) and (7) provide an alternative way to test the hypotheses in Frenken et al.

(2007). To do so, we interact a city’s industrial variety (column 6) or balance (column 7) with

its industrial disparity. To facilitate the interpretation of these interaction e�ects, all variables

have been mean-centered.

�e answer to Frenken et al. (2007) question about related and unrelated variety turns out

to depend on whether we think of industrial diversity as the number of di�erent industries

in a city or of how balanced the employment distribution across these industries is. Disparity

moderates the e�ect of variety downwards, but that of balance upwards. Since disparity is

the opposite of relatedness, this means that the e�ect of the variety component of diversity

increases with increasing relatedness, whereas the e�ect of the balance component decreases

with increasing relatedness.

�e coe�cient20 of +0.32 for variety in column (6) of Table 5.4 means that the association
20Given that all variables are expressed in natural logs, coe�cients should be interpreted as elasticities.
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between variety and employment growth is +0.32 at an average level of disparity, but varies

from +0.44 (at the minimum disparity, or maximum relatedness, in the sample) to −0.15 (for

the maximum disparity in the sample). In contrast, the association with balance is 0.13 at

average disparity levels, but varies from 0.01 to 0.56 between the minimum and maximum

disparity in the sample. �e �nding of positive e�ects of related variety and negative e�ects

of unrelated variety in Table 5.1 thus only holds if we measure diversity in terms of a city’s

variety (i.e. number of industries), not in terms of its employment balance across industries.

What happens if we change our measure of disparity to more closely re�ect the theoretical

considerations behind the hypotheses in Frenken et al. (2007)? To do so, we repeat the analy-

sis of Table 5.4 twice with some slight modi�cations. First, Table 5.5 measures disparity using

the (transformed) metric ψ̃ii′ proposed in eq. (5.12), based on the number of occupations that

industries share, instead of classi�cation-based relatedness. �is way, the relatedness between

industries more accurately measures the cognitive proximity that would lead to inter-industry

spillovers. Second, in Table 5.6 we change the dependent variable to the end-of-period unem-

ployment rate in a city and use the growth-similarity based metric χii′ of eq. (5.13) to more

accurately capture portfolio diversi�cation e�ects. Note that ψ̃ii′ and χii′ de�ne relatedness as

continuous variables. To allow for a fair comparison with Frenken et al. (2007), we convert ψ̃ii′

and χii′ into categorical (or be�er, ordinal) variables in such a way that each class contains

the same number of industry pairs as its counterpart in the classi�cation-based relatedness

matrix.

Table 5.5 shows that results when disparity is based on cognitive proximity are very similar

to the ones when disparity is based on classi�cation-based relatedness. Once again, results

corroborate Frenken et al. (2007) hypothesis in the interaction between disparity and variety,

but not in the interaction between disparity and balance. Moreover, the interaction e�ects are

somewhat stronger than when using classi�cation-based disparity.

Table 5.6 shows that general diversity, and in particular, a more balanced employment

distribution o�er some protection against high unemployment rates. Moreover, disparity in

growth correlation-based relatedness weakly strengthens the bene�ts of employment balance.

In line with the theoretical considerations put forward by Frenken et al. (2007), this suggests

that the greater the di�erence in growth pa�erns of industries in a city are, the more a balanced
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Table 5.5: Employment growth in cities (cognitive-proximity-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) 0.0217
(0.2031)

ln varc -0.1684 0.1120 0.4824***
(0.1122) (0.2286) (0.1320)

ln balc 0.0492 0.3460 -0.1283
(0.0829) (0.2282) (0.1619)

ln dispc 0.0998 0.3734 0.0265 0.1446
(0.0885) (0.2705) (0.0940) (0.1173)

ln varc × ln dispc -0.4517***
(0.0835)

ln balc × ln dispc 0.6796***
(0.2017)

lnEc -0.0955*** -0.0434 -0.0911*** -0.0785*** -0.0566* -0.2116*** -0.0741***
(0.0202) (0.0292) (0.0106) (0.0129) (0.0320) (0.0332) (0.0209)

Intercept 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.3976*** 0.4490***
(0.0108) (0.0107) (0.0108) (0.0108) (0.0107) (0.0123) (0.0109)

R2 0.27 0.28 0.27 0.28 0.29 0.38 0.32
R2 adj. 0.27 0.28 0.27 0.27 0.28 0.37 0.32
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

employment distribution across these industries can shield the city from high unemployment

rates. In contrast, a greater variety of industries is associated with higher unemployment rates,

especially if their growth rates are uncorrelated (or anti-correlated).

�ese results show that Frenken et al. (2007) theoretical framework can be brought to the

data in a more principled way using the generalized Hill number approach to measuring di-

versity. In general, our �ndings suggest that there is support for bene�ts in inter-industry

learning at an optimal cognitive distance if we focus on the variety component of diversity.

�at is, cities that host many related industries, regardless of their size, create more opportu-

nities for learning. Similarly, a balanced industrial portfolio seems to be associated with less

unemployment, especially of industries that exhibit di�erent growth pa�erns.

5.4.3 Economic complexity

Hidalgo and Hausmann (2009) motivate the ECI as a measure that aims to capture a city’s fun-

damental diversity in terms of the number (or variety) of capabilities a city makes available to

190



Table 5.6: Unemployment level in cities (growth-similarity-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) -0.2815**
(0.1332)

ln varc 0.1250 0.0063 0.6108***
(0.0780) (0.1759) (0.1878)

ln balc -0.2406*** -0.3347** -0.5076***
(0.0925) (0.1367) (0.1570)

ln dispc -0.0110 -0.1254 0.2074* -0.1627**
(0.0610) (0.1523) (0.1073) (0.0698)

ln varc × ln dispc -0.1974***
(0.0698)

ln balc × ln dispc 0.3596**
(0.1732)

lnEc 0.0717*** -0.0033 0.0235** 0.0324** 0.0028 -0.1073** -0.0041
(0.0225) (0.0257) (0.0117) (0.0132) (0.0370) (0.0434) (0.0155)

Intercept 0.0032 0.0032 0.0032 0.0032 0.0032 -0.0152 0.0064
(0.0149) (0.0150) (0.0149) (0.0150) (0.0149) (0.0160) (0.0151)

R2 0.04 0.03 0.04 0.02 0.05 0.05 0.06
R2 adj. 0.03 0.02 0.04 0.02 0.04 0.04 0.04
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

its �rms. How does the ECI compare to the generalized diversity described above as a mea-

sure of fundamental diversity? Figure 5.3 shows a sca�er plot between the two metrics. ECI

and generalized diversity are strongly correlated, with ρ = 0.47. Table 5.7 documents three

additional facts about the relation between ECI and generalized diversity. First, both ECI and

generalized diversity are strong predictors of a city’s average wage level (columns 1 and 2).

Second, however, when the two variables enter the model jointly, only the ECI is signi�cantly

associated with a city’s wage level, regardless of whether we control for the city’s size or not

(columns 3 and 4). �ird, the correlation between ECI and generalized diversity in Figure 5.3

seems to be fully mediated through both variables’ association with city size. Controlling for

city size, the statistical association between ECI and generalized diversity disappears (column

5). �is suggests that the ECI may indeed measure a more fundamental complexity of a city

than generalized diversity. In the remainder of this section, we scrutinize this claim by study-

ing three use scenarios of the ECI.

�e �rst scenario is close to the original paper by Hidalgo and Hausmann (2009). It fol-
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Figure 5.3: Generalized diversity and ECI.

Table 5.7: ECI, generalized diversity and urban wages. OLS regressions with dependent variables in the �rst row.

(1) (2) (3) (4) (5)
dep. var. ln avg. wage ln avg. wage ln avg. wage ln avg. wage lnDZ(pc)

ECIc 3.0234*** 2.8931*** 1.3963*** -0.0046
(0.1741) (0.2003) (0.3942) (0.1288)

lnDZ(pc) 1.1953*** 0.1787 -0.0747
(0.1326) (0.1330) (0.1469)

lnEc 0.0784*** 0.0342***
(0.0190) (0.0055)

Intercept 10.2801*** 7.9397*** 9.9330*** 9.5239*** 1.5497***
(0.0072) (0.2579) (0.2606) (0.2556) (0.0636)

R2 0.55 0.18 0.56 0.60 0.34
R2 adj. 0.55 0.18 0.55 0.60 0.33
N.obs. 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

lows the analysis of Figure 5.3 and Table 5.7 above and quanti�es the complexity of US cities

using the economic complexity index based on city-industry employment information. �e

second repeats this exercise, but focuses on the occupational mix of US cities. In analogy to

the city-industry application, having many di�erent occupations is assumed to be a sign of

a city’s complexity and being found in few cities (being “non-ubiquitous”) is taken as a sign

of the occupation’s sophistication. In the �nal application, we turn to data that describe the
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occupational mix used by di�erent industries. Note that, although it is easy to mechanically

apply the method of re�ections in occupation-industry data, the intuition for why this would

be meaningful is less convincing: Although industries that use many di�erent occupations

may be complex, it is hard to see why the using occupations that are not used by many other

industries would make industries sophisticated.

City-industry analysis

Figure 5.4 shows the city-space network constructed from city-industry employment data. �e

nodes in this network represent US cities. �ese nodes are connected by edges that express

how similar two cities are in terms of the industries they host. In the �rst panel, we color these

nodes by a city’s ECI. In the second, colors instead show the average wage in each city.

Figure 5.4: ECI and wages in the city space (industry-city analysis)

High-ECI areas in the network (colored dark red in the le� panel) tend to coincide with

high-wage areas (right panel). �e sca�er plot in Figure 5.5 corroborates this impression: the

regression of average wages on ECI has anR2 of 0.554. �is o�ers a visual con�rmation of the

relation described in model (1) of Table 5.7. Moreover, if we regard the average wage level in

a city as a re�ection of its productivity, these �ndings would also o�er support for the notion

that the ECI captures a city’s complexity.

Table 5.8 lends further credence to this interpretation. It shows the top 10 most complex

cities, which consists exclusively of high-income cities with plausibly complex economies,
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such as Los Angeles, San Francisco, Chicago and Boston.

Figure 5.5: ECI versus average wage in a city (industry-city analysis)

Table 5.8: Top 10 of most complex cities (city-industry analysis)
City ECI Avg. Wage
Los Angeles-Long Beach-Santa Ana, CA 0.207 41400
San Jose-Sunnyvale-Santa Clara, CA 0.192 63500
Chicago-Naperville-Elgin, IL-IN-WI 0.167 42400
New York-Newark-Jersey City, NY-NJ-PA 0.141 52300
New Haven-Milford, CT 0.135 39600
San Francisco-Oakland-Hayward, CA 0.134 50700
Boston-Cambridge-Newton, MA-NH 0.134 47800
San Diego-Carlsbad, CA 0.126 38000
Detroit-Warren-Dearborn, MI 0.118 42600
Bridgeport-Stamford-Norwalk, CT 0.113 58400

However, results become less convincing when we turn to the PCI. Figure 5.6 shows anal-

ogous panels to Figure 5.4, but now using industries as nodes in an industry space network.

�ere is no clear relation between PCI and average wages, both when comparing the two net-

work graphs and in terms of the correlation between PCI and wages in Figure 5.7. With an

R2 of 0.21, the PCI has no predictive power for industry-level wages. Moreover, some high-

PCI industries in Table 5.9, such as urban transit systems, seem poor examples of complex

economic activities.

City-occupation analysis

What happens when base the ECI on city-occupation instead of city-industry employment

data? Figures 5.8 and 5.9 show the city space and a sca�er plot of log(wage) against a city’s ECI,

using data on occupational employment in cities. Once again, the ECI is strong predictor of a

194



Figure 5.6: PCI and wages in the industry space (industry-city analysis)

Figure 5.7: PCI versus average wage in an industry (industry-city analysis)

Table 5.9: Top 10 of most complex industries (city-industry analysis). We limit this list to industries that employ
at least 25,000 workers in the US.

Industry PCI Avg. Wage
Motor vehicle manufacturing 0.191 64,111
Urban transit systems 0.147 43,015
Scheduled air transportation 0.125 54,095
Electric lighting equipment manufacturing 0.117 38,908
Steel product mfg. from purchased steel 0.114 46,611
Iron and steel mills and ferroalloy mfg. 0.109 55,467
Pharmaceutical and medicine manufacturing 0.104 75,532
Motion picture and video industries 0.101 53,333
Junior colleges 0.099 32,752
Other nonferrous metal production 0.097 52,113

city’s wage levels: high-ECI cities tend to exhibit high average wages. In contrast, the PCI fails

to accurately predict occupational wages. Figures 5.10 and 5.11 show that some occupations

with high PCI levels pay very high wages, but others do not. In fact, the list of most complex

occupations contains a number of high-skill occupations, such as computer so�ware engineers
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and �nancial analysts, as well as low-skill jobs, such as parking lot a�endants.

Figure 5.8: ECI and wages in the city space (occupation-city analysis)

Figure 5.9: ECI versus average wage in a city (occupation-city analysis)

Table 5.10: Top 10 of most complex cities (city-occupation analysis)
City ECI Avg. Wage
Washington, DC-MD-VA-WV 0.134 43200
Boston, MA-NH 0.116 44300
New York, NY 0.115 45100
Chicago, IL 0.114 38100
Philadelphia, PA-NJ 0.113 38100
Los Angeles-Long Beach, CA 0.110 37300
Minneapolis-St. Paul, MN-WI 0.109 39300
Sea�le-Bellevue-Evere�, WA 0.104 41500
San Francisco, CA 0.093 47900
Dallas, TX 0.089 36500

�is raises an interesting question: Why does the ECI seem a plausible measure of a

city’s complexity, regardless of whether we use cities’ occupational or industrial composi-
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Figure 5.10: PCI and wages in the occupation space (occupation-city analysis)

Figure 5.11: PCI versus average wage in an occupation (occupation-city analysis)

Table 5.11: Top 10 of most complex occupations (occupation-city analysis). We limit this list to occupations with
at least 25,000 across all cities.

Occupation PCI Avg. Wage
Actors 0.079 49,648
Parking Lot A�endants 0.058 17,277
Financial Analysts 0.054 67,811
Musicians and Singers 0.048 53,474
Computer So�ware Engineers, Systems So�ware 0.044 76,574
Operations Research Analysts 0.043 61,426
Market Research Analysts 0.043 60,539
Brokerage Clerks 0.041 36,258
Multi-Media Artists and Animators 0.04 52,902
Computer Hardware Engineers 0.039 78,306

tions, whereas the PCI fails to provide an equally intuitively appealing ranking of industries

or occupations?

�e problem is not necessarily that the method of re�ections does not work for industries

and occupations. However, to understand the algorithm’s outcomes, we must interpret them
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through a graph partitioning lens: the ECI does not count capabilities. Instead, it aims to split

the city space network into two sets of nodes (Gomez-Lievano, 2018; Mealy et al., 2019). In

each set, cities tend to have similar industries or occupations. �e real question, therefore,

is: Why does the ECI still manage to predict wage-levels in cities, whereas the PCI does not

predict wage-levels in industries or occupations?

A possible answer to this conundrum lies in the fact that not all industries base their loca-

tion choices predominantly on the availability of local capabilities. Although industries will

preferably locate where they can access the right mix of skills, specialized suppliers, infrastruc-

ture and institutions, some industries produce goods and services that need to be consumed

where they are produced. Such nontradable goods and services, like fresh bread, theater pro-

ductions or daycare provision, need to be produced close to consumers. Some of these goods

and services will found everywhere. Others can only be pro�table provided in places with a

large and a�uent population.

A complex city, therefore, a�racts two di�erent types of industries and their occupations.

First, it a�racts complex industries from the tradable sector, which seek out the city to access

its large capability base. �ese industries typically hire well-educated workers, who earn high

incomes. �ese incomes, in turn, a�ract a second set of industries: industries from the non-

tradable sector that cater to the needs of a wealthy population. �ese industries provide goods

and services, such as �ne dining and childcare. Moreover, because high-income cities tend to

be large, they may also o�er services that can only be sustained in large population centers,

like public transportation. �ese industries in the nontraded sector may not draw much from

the city’s capability base and, instead, employ low-skill workers with relatively low wages.

If accurate, the account predicts that the similarities described by the ECI will not just

group cities with similar capability requirements, but also with similar consumption pa�erns.

�is dual logic divides cities neatly into high and low income cities, because income earned in

the tradable, capability-seeking sector is spent in the local nontradable sector. In contrast, the

PCI, which captures which industries locate in similar cities, would group a mix of two di�er-

ent types of industries. It would �rst distinguish between low- and high-complexity industries

in the tradable sector. However, it would then augment the set of high-complexity industries

with a set of, o�en low-skill, industries that cater to the needs of a wealthy population. As a
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consequence, the ECI would be a reliable predictor of wages, but the PCI would not be.21

Industry-occupation analysis

To more forcefully show that the ECI and PCI should not be uncritically considered as indices

of economic complexity, we now turn to an application that uses industry-occupation employ-

ment data. Figure 5.12 shows the results from the industry perspective, Figure 5.13 from the

occupation’s perspective. Unlike the core-periphery pa�erns of Figures 5.4 and 5.8, the indus-

try space now consists of various weakly connected areas. Moreover, the relation between ECI

or PCI and wages has vanished completely: the R2 of both regressions is below R2 = 0.03.

In spite of the fact that the ECI is a be�er predictor of a city’s productivity (proxied by its

wage level) than generalized diversity, it is unclear to what extent the ECI measures a city’s

fundamental diversity, i.e., the breadth of its capability base. Because of this, Mealy et al. (2019)

conclude that the ECI and PCI o�er a dimension-reduction technique, with no clear link to

complexity as fundamental diversity. Providing a more positive evaluation, Sche�er (2019)

derives a set of su�cient conditions under which the ECI reliably ranks economies in terms

of their complexity. Overall, however, the true meaning of the ECI and its role in economic

development remains an active area of research.

Figure 5.12: ECI and wages in the industry space (occupation-industry analysis)

21Note that this issue does not arise in Hidalgo and Hausmann (2009). Because these authors base the ECI on
a country’s exports, by de�nition, their data re�ect production that is not meant for local markets.
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Figure 5.13: PCI and wages in the occupation space (occupation-industry analysis)

5.4.4 �e product space

�e product space was originally used to predict how countries will diversify their trade bas-

kets Hidalgo et al. (2007). Since then, many authors have not just predicted the emergence

of new products (or industries) in an economy – so-called growth at the extensive margin –

but also how existing products and industries have grown. In this section, we will focus on

this growth at the intensive margin and estimate models based on the following regression

equation:

log
(
EicT

/
Eict

)
= β0 + β1 logEict + β logXict + logEit + logEct + εict

In other words, our dependent variable is the logarithm of industry i’s growth factor in

city c. As explanatory variables, we include a mean reversion term, logEict, as well as the size

of the industry (logEit) and of the city (logEct) in the base year. �e main variables of interest

are collected in the vectorXict.

Table 5.12 shows the results. In column (1), apart from industry and city size variables,

we only add the mean reversion term and the product space density, using φ̃ii′ of eq. (5.7), as

explanatory variables. As expected, and in line with the literature’s prior consensus, the mean
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reversion term shows a negative, and the product space density a positive association with

employment growth.

Table 5.12: Product space regression. Dependent variable: Employment growth in city-industry pairs. Regressors
use the industry space as de�ned by φ̃ii′ of eq. (5.7).

(1) (2) (3) (4) (5) (6) (7) (8)

lnDi
c 0.2705*** 0.1945***

(0.0181) (0.0184)
lnEic 0.7910*** 0.6619*** 0.7873*** 0.7934*** 0.7754*** 0.7938*** 0.7982***

(0.0456) (0.0466) (0.0456) (0.0457) (0.0459) (0.0458) (0.0462)
lnDZ(pic) -0.3161**

(0.1237)
ln varic 0.1378***

(0.0294)
ln balic -0.0765***

(0.0229)
ln dispic -0.0135 -1.0519***

(0.0156) (0.1822)
lnDI(p

i
c) -0.9886***

(0.1926)
lnDI(p

i
c) × ln dispic -0.1561***

(0.0197)
lnEic -0.3896*** -0.3977*** -0.4020*** -0.3984*** -0.3966*** -0.3968*** -0.3978*** -0.4018***

(0.0054) (0.0055) (0.0056) (0.0055) (0.0055) (0.0055) (0.0055) (0.0056)
lnEc 0.2517*** -0.4784*** -0.3755*** -0.4732*** -0.5158*** -0.4667*** -0.4839*** -0.4905***

(0.0054) (0.0435) (0.0442) (0.0435) (0.0444) (0.0437) (0.0441) (0.0455)
lnEi 0.3141*** 0.3115*** 0.3162*** 0.3121*** 0.3112*** 0.3108*** 0.3116*** 0.3151***

(0.0058) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059)
Intercept 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3241***

(0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0042)
R2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
R2 adj. 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
N.obs. 43322 43322 43322 43322 43322 43322 43322 43322

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Hidalgo et al. (2007) interpret this �nding as evidence that a large variety (counted as the

number of industries with LQ > 1) of relevant (i.e., related) industries in a city enhances the

focal industry’s growth potential. However, is this really the case? An alternative explanation

is that density is a proxy for having a large quantity of related activity in the city. In columns (2)

and (3), we test this hypothesis by adding the relative mass (the total employment in related

industries, as de�ned in eq. (5.9)) to the regression model.

�e mass of related activity turns out to be more important than its variety: mass dis-
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plays a stronger statistical association with employment growth than density does. Moreover,

when adding both variables simultaneously, the association between density and employment

growth weakens substantially.

In the remaining columns, we investigate the relation between the growth of local industry

and the diversity of related industries in more detail. To do so, we replace density by the

relative Hill numbers proposed in Section 5.3.4. �ese variables o�er an alternative, more

disaggregated way to look at diversity in a neighborhood of related industries.

Outcomes are shown in columns (4) to (7). �e association of employment growth with

overall relative diversity in column (4) is negative. When decomposing relative diversity into

relative variety, relative balance and relative disparity, this negative association turns out to

be driven by the relative balance component. �at is: the more equally proximity-weighted

employment is distributed across related industries, the more slowly the focal industry grows.

Learning versus producing

Hidalgo et al. (2007) interpret a large diversity of related industries as a sign that a city o�ers

many capabilities that are relevant to the focal industry. In the introduction, we referred to

this as a production-based logic: industries can only get established in places where they

can mobilize all capabilities they require. �e EEG literature has typically stressed another

reason why diversity of related industries would be bene�cial: the existence of opportunities

for local learning. Both rationales can explain why density is positively associated with a local

industry’s growth rate. So how can we decide which of these interpretations is correct?

To answer this question, note that the two narratives di�er in their interpretation of the

edges in the product space. In the EEG literature, such connections are o�en interpreted as es-

timates of how easily knowledge can �ow within an economy. In this reading, a large number

of related industries provides greater scope for local knowledge sharing and local learning.

A production-based interpretation, in contrast, regards the industry space as a re�ection of

shared capability requirements. From this perspective, industry spaces capture economies of

scope between industries.

Although both perspectives suggest that a greater variety or balance of related industries

is bene�cial, they give di�erent predictions with respect to relative disparity. In a shared-
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capability world, related activities would ideally be unrelated to one another. �at way, each

activity o�ers non-redundant capabilities to the focal industry. In contrast, in a learning world,

related activities are ideally also related among each other. �is way, all related industries can

exchange knowledge, se�ing in motion a virtuous cycle of local learning.

Column (8) explores which of the two hypotheses �nds most support in the data. It does

so by interacting relative disparity with a compound measure of relative variety and relative

balance. �is interaction term is negative: the smaller the disparity among related industries is

– i.e., the more the focal industry’s related industries are also related to one another – the faster

the focal industry will grow. �is supports the local learning hypothesis, not the capability-

sharing hypothesis. Note, however, that although the e�ect of the relative variety-balance

compound variable increases as relative disparity drops, it remains negative for the entire

range of relative disparity values observed in the sample. Such negative e�ects contradict

both the learning and the capability-sharing hypothesis. However, this conclusion depends

on the econometric speci�cation, relatedness matrix and dependent variable we choose.22 A

de�nitive conclusion would thus require a more careful analysis and ideally a replication of

these �ndings.

5.5 Discussion and conclusion

Recent years have seen a renewed interest in, and debates about, the importance of diversi-

�cation in local economies. �ese debates were fuelled by three di�erent lines of research:

research on related variety, on economic complexity and on product and industry spaces. Al-

though these lines of research emerged more or less contemporaneously and share many com-

monalities, they trace their origins to di�erent intellectual traditions. As a consequence, they

depart from di�erent ontological starting points and measurement philosophies. Whereas re-

lated variety research is rooted in evolutionary economic geography, complexity and product

space research is rooted in the economics of trade and growth on the one hand and the com-

plexity sciences on the other.

As a result, the role of diversity di�ers across these approaches. Related variety research
22�e reader can explore this in the companion Python Notebook.
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a�ributes the bene�ts of a diversi�ed economy �rst and foremost to greater opportunities for

inter-industry learning. As such, it stresses the dynamic e�ciency of diversi�ed economies –

and in particular of economies in which di�erent industries are related to one another. �e

complexity approach, in contrast, regards industrial diversity as a sign of a broad capability

base. In the economic complexity framework, an industry can only emerge in places that o�er

all the capabilities it requires. �is idea has been illustrated with the metaphor of the game of

Scrabble. In Scrabble, players hold le�ers that allow them to put together words. However, a

word can only be wri�en once a player owns every single le�er it requires. In analogy, cities

can only develop industries if they can o�er each and every capability the industry requires.

More diversi�ed economies therefore typically dispose of a wider variety of capabilities and

more complex industries will only be able to locate in few, highly complex cities. Moreover,

diversi�cation will be path-dependent, branching into nearby activities in the industry space.

However, this related diversi�cation is not considered to be optimal. Rather, industry spaces

constrain economies to incremental change and may prevent them from moving immediately

into industries that are most productive or that pay the highest wages. Unlike the Schumpete-

rian learning dynamics that underlie the concept of related variety, the Scrabble logic thus

re�ects static e�ciency: it explains why certain cities can host industries that other cities

cannot.

In the paper, we aimed to describe these and other di�erences and commonalities between

the di�erent lines of research, as well as critically assess some of the theoretical and empir-

ical claims they make. Doing so, we pointed out a number of inconsistencies between the

underlying conceptual frameworks and the empirical strategies that have been developed.

Furthermore, we proposed a measurement methodology that allows bridging the di�erent

research lines. �is methodology �rst builds on existing work in ecology to quantify what we

have called generalized diversity. We showed how this generalized diversity can be decom-

posed into three components: variety, balance and disparity. Furthermore, we showed how

this generalized diversity can be used to calculate a relative diversity, i.e., the diversity a local

industry �nds in a city among a set of closely related neighbors. Armed with these new tools,

we showed how to scrutinize – in a principled and uni�ed way – some of the main theoreti-

cal claims in the newly emerging literature on the importance of diversity in local economic
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development.

�is exercise yielded a set of preliminary, yet interesting results. First, we documented

that �ndings that build on the notions of related and unrelated variety are sensitive to ad

hoc choices about how to measure relatedness and the thresholds at which two activities are

considered to be related or not. Second, we discussed why the ECI cannot immediately be

interpreted as a measure of the fundamental diversity of a city’s capability base. Yet, we also

found that it does correlate fairly well with generalized diversity and that it is a strong predic-

tor of a city’s average wage level. �ird, we showed how the empirical regularity of related

diversi�cation documented in the product space literature is not necessarily due to a large

diversity in related activities, but due to the importance of the (correlated) mass of related

activities in a region.

�ere are a number of important caveats to our study. First, the debate on diversity is both

older and larger than what we cover in this paper. However, the limited focus allowed us to

focus on the recent contributions to this debate and to provide some nuance on the di�erent

intellectual positions these contributions assume. Yet, even within this narrower scope, we had

to leave out many contributions. For instance, several proposals have been made to improve

the related and unrelated variety framework (e.g. Kogler et al. (2013)). Similarly, alternatives

to the ECI and PCI have been proposed (e.g. Tacchella et al. (2012)).

Second, although the generalized and relative diversity measures and their decomposition

are helpful tools to study di�erent aspects of urban diversity, we do not claim that they are op-

timal. Alternatives exist – even within the Hill number approach we followed – and should be

explored. Moreover, the fact that, in spite of the di�culties in interpretation, the ECI outper-

forms generalized diversity in predicting urban wage levels suggests that there is still much we

do not understand about the relation between a city’s industry mix and its growth potential.

�ird, the aim of our empirical analyses was not to prove or disprove speci�c hypothe-

ses, but rather to show that empirical �ndings can depend crucially on modelling choices.

�erefore, we le� a number of important issues unexplored. Importantly, we did not make

any a�empts to deal with issues of miss-speci�cation or endogeneity in our statistical models.

We also did not explore to what extent �ndings di�er across contexts. For instance, the re-

lation between diversity and growth may be di�erent in di�erent sectors or across the urban
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hierarchy.

In spite of this, we believe that our paper clari�es some important conceptual distinctions

in the literature that have so far remained somewhat implicit. Moreover, we o�er new em-

pirical tools to explore the empirical importance of these distinctions. We hope that this has

created a solid starting point for future research that not only addresses the aforementioned

shortcomings, but also other concerns and research questions. �e companion python code in

the format of Jupyter notebooks codi�es the construction of variables, as well as of our regres-

sion models and should therefore facilitate others to build on this work. Ultimately we hope

that this will help arrive at a be�er understanding of, and, possibly even a scienti�c consensus

about, the role of diversity in the growth and development of local economies.
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5.6 Data

�e data are taken from the Bureau of Labor Statistics (BLS) and come from three main sources:

the �arterly Census of Employment and Wages (QCEW) for employment (E) and wages (w);23

the Local Area Unemployment Statistics (LAUS) for unemployment (U);24 and the Occupa-

tional Employment Statistics (OES) for occupations.25

5.6.1 Employment, Unemployment and Wages

�e data cover the time window 1990–2006, with 369 Metropolitan Statistical Areas (MSA)

and 278 industries in each year.26

To aggregate the data at the MSA level from data at the County level we use a crosswalk

from the US Census Bureau (2004 MSA de�nition;27 i.e., the same used by BLS).28 In this way,

the MSAs considered in the paper are consistent over time, in terms of their composition of

counties.

�e industries are classi�ed according to the NAICS 2002 system.29 We consider industries

at the 4-digit level, so the data consist of 278 industry groups at the 4 digit level, 78 sub-sectors

at the 3-digit level, and 20 sectors at the 2-digit level.30

Wages refer to the average annual wage per-employee. For employment and wages, “undis-

closed” information is dropped; i.e., there are no employees and the variable avg. wage is zero

for these city-industry pairs.31

23h�ps://www.bls.gov/cew/downloadable-data-�les.htm
24h�ps://download.bls.gov/pub/time.series/la/la.data.64.County
25h�ps://www.bls.gov/oes/
26�e following NAICS codes are excluded: 11 (Agriculture, forestry, �shing and hunting); 21 (Mining, quar-

rying, and oil and gas extraction); 49 (Postal service, delivery services, warehousing); 92 (Public administration);
99 (Unclassi�ed); 482 (Rail transportation); 814 (Private households); 5211 (Monetary authorities - central bank).

27h�ps://www2.census.gov/programs-surveys/metro-micro/geographies/reference-�les/2003/
historical-delineation-�les/0312cbsas-csas.xls

28h�ps://www.bls.gov/cew/questions-and-answers.htm
29Data from 1990-2000 were originally coded in the 1987 SIC classi�cation. In a NAICS reconstruction project,

the data had been reclassi�ed to the NAICS 2002 classi�cation.
30h�ps://www.bls.gov/sae/additional-resources/what-is-naics.htm

h�ps://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2002
31h�ps://www.bls.gov/cew/overview.htm#con�dentiality
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5.6.2 Occupations

We further use occupation-MSA and occupation-industry tables for the year 2002, which cover

the same set of 278 industries. However, in the occupation tables, there are 337 MSAs and there

is no exact correspondence to the MSAs used in the industry tables. Indeed, while for CEW

data we use the 2004 MSA de�nition, the BLS provides the OES database already aggregated at

the MSA level and in accordance with the 1999 MSA de�nition. Since the la�er uses NECTA

areas for the New England states (i.e., an aggregation of towns and not counties), it is impos-

sible to make the two sources consistent.

To obtain consistent occupation labels, the data have been harmonized by taking the inter-

section of occupations across the MSA and industry tables. �is resulted in 688 occupations at

the 6-digit “detailed” level (SOC 2010 classi�cation) a�er excluding the following SOC codes:

11-1031 (Legislators); 11-9131 (Postmasters and mail superintendents); 13-2081 (Tax exam-

iners, collectors, and revenue agents); 23-1021 (Administrative law judges, adjudicators, and

hearing o�cers); 23-1023 (Judges, magistrate judges, and magistrates); 33-3011 (Baili�s); 33-

3031 (Fish and game wardens); 39-6031 (Flight A�endants); 43-5051 (Postal service clerks);

43-5052 (Postal service mail carriers); 43-5053 (Postal service mail sorters, processors, and

processing machine operators); 47-5061 (Roof bolters, mining); 49-9097 (Signal and Track

Switch Repairers); 51-8011 (Nuclear Power Reactor Operators); 53-2011 (Airline Pilots, Copi-

lots, and Flight Engineers); 53-4011 (Locomotive Engineers); 53-4021 (Railroad Brake, Signal,

and Switch Operators); 53-4031 (Railroad Conductors and Yardmasters); 53-6011 (Bridge and

lock tenders).

5.7 List of variables
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Table 5.13: Overview of variables and descriptive statistics

Basic variables
Pic industry-city matrix (LQ > 1)
Eic industry employment matrix
pic employment share of industry i in city c
Eii′c proximity-weighted employment of i′ relative to i in city c
pii′c proximity-weighted employment share of i′ relative to i in city c

Proximity matrices
φ̃ii′ co-occurrence based industry proximity matrix
ψ̃ii′ occupation based industry proximity matrix
ρ̃ii′ growth correlation based industry proximity matrix
φ̃cc′ industry based city proximity matrix
φ̃oo′ co-occurence based occupation proximity matrix

City level variables
pc vector of industry employment shares
Ec total employment in city c

S(pc) entropy of industry employment in city c
UVc unrelated variety in city c
RVc related variety in city c

DI(pc) ‘e�ective number’ of industries in city c
DZ(pc) (disparity-weighted) diversity of industries in city c

varc (normalized) variety of industries in city c
balc balance of industries in city c
dispc disparity of industries in city c

City-industry level variables
pic vector of industry employment shares relative to i in city c
Di
c density of industries relative to i in city c

Eic total employment (mass) of industries relative to i in city c
DI(p

i
c) ‘e�ective number’ of industries relative to i in city c

DZ(pic) (disparity-weighted) diversity of industries relative to i in city c
varic (normalized) variety of industries relative to i in city c
balic balance of industries relative to i in city c
dispic disparity of industries relative to i in city c
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Table 5.14: Descriptive statistics for city level data.

count mean std min 25% 50% 75% max

lnEc 369 10.94 1.36 6.67 9.98 10.67 11.68 15.61
lnwc 369 9.81 0.20 8.88 9.71 9.81 9.93 10.43
lnUc 369 8.88 1.05 6.63 8.14 8.63 9.38 13.03
lnEcT

/
Ect 369 0.44 0.24 -0.08 0.29 0.41 0.57 1.77

lnwcT
/
wct 369 0.58 0.09 0.22 0.52 0.57 0.63 1.21

lnUcT
/
Uct 369 0.00 0.29 -1.34 -0.17 -0.00 0.19 0.89

Related-Unrelated variety
RVc 1-dig. 369 2.35 0.37 0.74 2.14 2.35 2.59 3.13
RVc 2-dig. 369 1.74 0.27 0.54 1.59 1.76 1.94 2.37
RVc 3-dig. 369 0.73 0.17 0.06 0.62 0.74 0.86 1.12
UVc 1-dig. 369 1.73 0.09 1.12 1.70 1.75 1.79 1.87
UVc 2-dig. 369 2.33 0.20 1.13 2.25 2.36 2.46 2.63
UVc 3-dig. 369 3.34 0.27 2.02 3.21 3.35 3.51 3.84

Diversity using the classi�cation-based proximity
lnDZ(pc) 369 1.14 0.35 0.58 0.79 1.12 1.49 1.72
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.93 0.26 -3.35 -3.08 -2.96 -2.83 -1.37

Diversity using the co-occurrence-based proximity
lnDZ(pc) 369 1.51 0.15 0.94 1.40 1.49 1.65 1.79
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.56 0.32 -3.18 -2.75 -2.59 -2.44 -0.88

Diversity using the cognitive-proximity-based proximity
lnDZ(pc) 369 1.38 0.16 0.66 1.27 1.37 1.49 1.70
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.69 0.27 -3.23 -2.88 -2.72 -2.58 -1.42

Diversity using the growth-similarity-based proximity
lnDZ(pc) 369 1.36 0.21 0.76 1.26 1.31 1.38 2.21
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.71 0.28 -3.15 -2.92 -2.74 -2.59 -1.26

Note: Wherever not necessary, the subscript t is omi�ed for brevity.
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Table 5.15: Descriptive statistics for city-industry level data, using the classi�cation-based proximity.

count mean std min 25% 50% 75% max

lnEic 43315 5.90 1.59 0.00 4.79 5.80 6.92 12.43
lnwic 43315 9.79 0.49 7.68 9.44 9.83 10.13 13.14
lnEicT

/
Eict 43315 0.34 0.76 -5.02 -0.06 0.31 0.71 5.84

lnwicT
/
wict 43315 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEic 43315 5.91 1.42 0.02 4.82 5.76 6.80 10.35
lnDi

c 43315 -1.34 0.44 -5.25 -1.49 -1.25 -1.06 -0.35
lnDI(p

i
c) 43315 3.71 0.61 0.54 3.55 3.86 4.13 4.54

lnDZ(pic) 43315 1.22 0.14 0.70 1.23 1.28 1.30 2.98
ln varic 43315 -1.25 0.65 -4.93 -1.42 -1.06 -0.81 -0.49
ln balic 43315 -0.66 0.19 -2.82 -0.74 -0.65 -0.57 -0.04
ln dispic 43315 -2.49 0.55 -3.24 -2.85 -2.63 -2.32 2.33
lnEc 43315 11.45 1.43 6.58 10.31 11.25 12.42 15.61
lnEi 43315 12.42 1.11 4.79 11.63 12.52 13.23 14.74

Note: Wherever not necessary, the subscript t is omi�ed for brevity.

Table 5.16: Descriptive statistics for city-industry level data, using the industry space as de�ned by ψ̃ii′ of
eq. (5.12).

count mean std min 25% 50% 75% max

lnEic 43322 5.90 1.59 0.00 4.79 5.79 6.92 12.43
lnwic 43322 9.79 0.49 7.68 9.44 9.83 10.13 13.14
lnEicT

/
Eict 43322 0.34 0.76 -5.02 -0.06 0.31 0.71 5.84

lnwicT
/
wict 43322 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEic 43322 5.84 1.42 0.61 4.71 5.66 6.80 10.42
lnDi

c 43322 -1.39 0.30 -3.86 -1.56 -1.37 -1.19 -0.51
lnDI(p

i
c) 43322 4.07 0.44 1.29 3.82 4.12 4.39 4.97

lnDZ(pic) 43322 0.78 0.07 0.32 0.75 0.78 0.82 1.61
ln varic 43322 -0.85 0.43 -4.02 -1.15 -0.82 -0.54 -0.05
ln balic 43322 -0.70 0.19 -2.51 -0.79 -0.68 -0.58 -0.02
ln dispic 43322 -3.29 0.43 -4.16 -3.60 -3.34 -3.04 0.11
lnEc 43322 11.45 1.43 6.58 10.30 11.25 12.42 15.61
lnEi 43322 12.42 1.11 4.79 11.63 12.52 13.23 14.74

Note: Wherever not necessary, the subscript t is omi�ed for brevity.
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Table 5.17: Descriptive statistics for city-industry level data, using the industry space as de�ned by ρii′ of
eq. (5.13).

count mean std min 25% 50% 75% max

lnEic 38484 5.92 1.58 0.00 4.83 5.82 6.93 12.43
lnwic 38484 9.79 0.48 7.68 9.46 9.84 10.13 13.05
lnEicT

/
Eict 38484 0.32 0.75 -5.02 -0.07 0.29 0.68 5.84

lnwicT
/
wict 38484 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEic 38484 5.97 1.41 0.33 4.91 5.81 6.88 10.76
lnDi

c 38484 -1.23 0.40 -3.93 -1.42 -1.17 -0.98 0.00
lnDI(p

i
c) 38484 3.14 0.73 0.01 2.82 3.33 3.64 4.51

lnDZ(pic) 38484 0.84 0.39 0.32 0.61 0.73 0.98 6.75
ln varic 38484 -1.90 0.74 -4.93 -2.19 -1.72 -1.39 -0.60
ln balic 38484 -0.58 0.22 -2.59 -0.65 -0.54 -0.46 -0.00
ln dispic 38484 -2.30 0.98 -3.63 -2.95 -2.60 -1.88 6.74
lnEc 38484 11.34 1.45 3.56 10.16 11.19 12.39 15.45
lnEi 38484 12.37 1.10 4.06 11.59 12.51 13.15 14.71

Note: Wherever not necessary, the subscript t is omi�ed for brevity.
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